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Abstract

Electricity grids form the backbone of modern economies, but the utilities responsible for
maintaining them face new energy management challenges associated with both aging in-
frastructure and climate change. Growing evidence suggests that digital technologies and
data-driven decision-making may improve firm performance. However, existing work focuses
on the private sector. Organizations providing public services have different incentives and
constraints. In this paper, we narrow this gap through a study of the U.S. power sector. We
construct a rich utility-level data set and estimate the effects of “smart” meters on electric-
ity losses, a key indicator of system and utility performance. Implementing an augmented
staggered difference-in-differences design, we find that electricity losses decrease by 4-7% fol-
lowing smart meter deployment, on average. Utilities’ annual revenue increases by 1-2%.
We show that the underlying mechanisms relate to changes in energy management. Con-
sumption measurement and billing accuracy improve, as indicated by an increase in sales,
giving utilities a clearer understanding of the system to enhance decision-making. Utilities
invest in complementary organizational capital that is important for fully realizing the ben-
efits of digitalization, such as hiring “quants.” They also offer new products, like demand
response programs, which attenuates the increase in sales but does not drive the reduction in
losses. Power outage duration declines, suggesting that utilities use smart meters to improve
reliability by restoring service faster after disruptions. Outage frequency remains unchanged.
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1 Introduction

Economic activity—from business and industrial operations to healthcare and transporta-
tion—hinges on having access to high-quality and reliable electricity. However, electricity
grids in many countries are aging and increasingly susceptible to disruptions. Power out-
ages in the United States now cost between $28 and $169 billion annually (ASCE 2021).
Although severe weather is often at play, poor power quality and reliability are also caused
by other factors, like equipment failure and inadequate upgrading (EIA 2021; Malik 2024).
Grid resilience thus depends crucially on the performance of electric utilities—the companies
responsible for maintaining the system and delivering power to consumers. Improving grid
management will be increasingly important moving forward. In an effort to mitigate climate
change, deployment of renewable energy sources with variable output and electrification of
end-use products are accelerating. These shifting dynamics are intensifying demands on the
system and introducing new challenges for utilities.

Digitalization is often considered an important part of the solution. “Smart grid” tech-
nologies that provide granular, real-time data and automation capabilities can now—at least
in theory—help utilities optimize operations, monitor system performance, develop more ac-
curate demand forecasts, and improve system flexibility (Joskow 2012). However, despite the
hundreds of billions of dollars spent each year globally on modernizing electricity grids (IEA
2023), whether digitalization delivers on its promises remains contentious." The benefits
depend on how utilities actually use the technology, but research remains thin.

In fact, little is known about the effects of digitalization on public services more gen-
erally. A flourishing literature is finding that digital technologies and data-driven decision-
making can enhance firm performance in the private sector (Brynjolfsson and Hitt 2003;
Bartel, Ichniowski and Shaw 2007; Brynjolfsson and Saunders 2013; Brynjolfsson and McEl-
heran 2016; Goldfarb and Tucker 2019; Brynjolfsson, Jin and McElheran 2021b; Bar-Gill,
Brynjolfsson and Hak 2024). Previous findings may not transfer, however, as organiza-

tions providing public services—like utilities, hospitals, and schools—operate under different

!'Many utilities are not fully exploiting the technology’s capabilities and therefore not accruing all of the
potential benefits (Gold, Waters and York 2020). Smart meters also can empower consumers to better-
manage electricity use and reduce their bills, but less than 3% of meters funded by the American Recovery
and Reinvestment Act had real-time data features enabled a decade after installation (Utility Dive 2022).



conditions. For example, they often face different market forces (e.g., less competition),
bureaucratic processes, and budgetary constraints, which can impact investments and inno-
vative activity. Moreover, the benefits of complex information technologies (like smart grids)
often depend on parallel investment in complementary organizational capital, such as new
business processes and skills (Brynjolfsson and Hitt 2000; Bresnahan, Brynjolfsson and Hitt
2002; Bloom, Sadun and Van Reenen 2012; Brynjolfsson, Rock and Syverson 2021a).

In this paper, we provide evidence as to how digitalization impacts public service pro-
vision through a study of the U.S. electricity sector. We examine the effects of electric
utilities” deployment of smart meters, important components of advanced metering infras-
tructure (AMI), on utility performance and service quality across the U.S. from 2007 through
2017. Utilities historically relied on analog meters that were developed in the 1800s to track
electricity consumption, requiring in-person readings and providing only sparse, imprecise
data. Investments in AMI accelerated about 15 years ago, though, entailing substantial pub-
lic and private expenditures, and the industry is now going through a “digital revolution.”
Approximately 119 million smart meters were installed in the U.S. as of 2022 (EIA 2022).”

Smart meters remotely transmit high-resolution data on consumption, power quality,
outages, and more that can help utilities reduce operational costs and enhance billing accu-
racy, forecasting, asset and load management, and system monitoring. These are important
aspects of energy management that impact utility performance, and in turn, quality of ser-
vice. Smart meters also can improve reliability if utilities use the information provided on
power outage location to restore service faster. Outage frequency may even decline.?

Estimating the causal effects of digitalization on public services is empirically challenging
for multiple reasons. First, technology adoption may be driven by endogenous organization
and market characteristics, such as providers’ resources and local economic growth. To
address endogeneity concerns, we augment a staggered difference-in-differences design with
a two-stage least squares (2SLS) approach. Our method is akin to the one developed in

Freyaldenhoven, Hansen and Shapiro (2019), which removes the potential effects of pre-trends

2This is approximately 72% of total U.S. electric meters (EIA 2022). See Strong (2018) for details of
smart meters early diffusion among U.S. electricity utilities.

3For example, if utilities are able to smooth demand throughout the day with the tools that are enabled
by smart meters—such as demand response programs—outages related to excess demand may decrease.



by instrumenting a covariate that proxies for confounders with leads of the treatment.

Second, studying public services is particularly difficult due to challenges with measuring
service quality, especially doing so systematically for all providers within an industry.* The
U.S. electricity sector provides a unique setting to overcome this limitation. Utilities serve
(just about) all electricity customers and are required to report standardized information
annually to the U.S. Energy Information Administration (EIA). We combine numerous data
sets from the EIA for the years 2007 through 2018—the time period over which AMI invest-
ments took off—that include detailed information on operations, services, and smart meter
installations for all utilities in the U.S. We also transcribed within-utility feeder line level
data on power outages in Texas from Public Utility Commission reports to study reliability.

We start by examining the effects of smart meters on electricity losses, a key indicator
of utility performance. Each year, about 5-6% of electricity that is generated in the U.S.
is lost during transmission and distribution, which translated into more than $6 billion
in lost revenue for utilities in 2020 (Shadle 2022). Losses are calculated as the difference
between power supplied to the grid and that for which customers are billed, and the loss
rate is the proportion of power that is lost. Although losing some power is unavoidable
due to the physical properties of electrical systems, high losses usually reflect inefficiencies.
For example, unbilled consumption can result from incorrect meter readings or electricity
theft (e.g., meter tampering). Losses also increase as equipment ages, so they may reflect
inadequate upgrading, increasing exponentially with voltage fluctuations when the system is
overloaded (i.e., demand exceeds capacity). This is a complex relationship, as power quality
and reliability can both contribute to, and be exacerbated by, high losses.’

We find strong evidence that smart meter deployment improved utility performance. On
average, loss rates decreased by 3.8% relative to the pre-treatment mean. When omitting
utilities in the bottom quartile of the pre-treatment loss rate distribution—initially high-
performers that had little room to improve—we find a 5% decline. The improvements also

grow over time. After three years, loss rates are 5.8% lower for utilities that deploy smart

4For example, healthcare studies frequently examine mortality as a proxy for quality, but deaths may
occur even with high-quality care. Other measures could include the time doctors spend with patients or
diagnosis accuracy. Furthermore, a lot of research focuses on hospitals, which is just one type of provider.

SPower quality is lower when voltage is low (e.g., flickering or dimming of lights), and since voltage
fluctuations can contribute to losses, high losses could reflect a poorer quality of power for end-users.



meters on average and 6.7% lower when omitting initially “high-performers.” These results
are consistent with how it can take time for the benefits of AMI to accrue, as improvements
may scale with the proportion of meters replaced, and utilities may need to develop new
business processes and skills necessary to operationalize the technology’s functionalities.

Utilities also benefit from revenue gains. On average, revenue increased by 0.9% for
utilities that deployed AMI relative to their pre-treatment mean and by 1.4% when restricting
the sample to those that were lower performers at baseline. After three years, the increases
grow to 1.7% and 2.2%, respectively, translating into $2.4 to $3.1 million in additional annual
revenue per utility.

We probe the underlying channels of our results and find evidence of four mechanisms.
First, consumption measurement and billing accuracy improve, as indicated by an increase
in sales per customer.® Sales increase if utilities use AMI to address bill non-payment and
electricity theft, benefits that utilities commonly report (U.S. Department of Energy 2016a).
Analog meters also may have been under-reporting actual usage given how they slow down
as they age. Replacing many old meters with digital ones can significantly increase sales.
Although these results imply higher electricity bills (all else equal), customers may value
having a more accurate account of their energy usage, reflecting a higher quality of service.
Enhanced accuracy also provides utilities with opportunities to improve important aspects
of energy management—such as demand forecasting, load management and proactive main-
tenance—which in turn, can reduce technical losses.

Second, we find that the likelihood that utilities start offering new products like dynamic
pricing and demand response programs increased, reflecting efforts to implement more so-
phisticated load management practices that could ultimately improve service quality and
grid resilience. The increase in sales per customer that emerges with AMI deployment is
also attenuated when utilities offer these products. At the same time, we do not find that
introducing these products drives the loss reductions. This could be because the proportion
of customers using the products during our sample period is low, though, so there could be

potential for doing so with greater consumer uptake.

6Decreases in sales also could have signalled performance improvements. For example, sales could decrease
if customers use information from their smart meters to reduce consumption (and thus their electricity bills),
which could also help utilities’ load management.



Third, to further investigate whether utilities make energy management adjustments,
we examine the composition of the utility sector’s local workforce. Integrating smart tech-
nologies and leveraging their capabilities to improve decision-making requires workers with
different skills relative to those required for manually reading traditional meters. Using
Occupational Employment and Wage Statistics data provided by the U.S. Bureau of Labor
Statistics, we find a reduction in meter readers with AMI deployment along with an increases
in the number of “quants” (e.g., computer scientists who are equipped with the skills required
to analyze data and improve energy system modelling). These results are consistent with
utilities making organizational investments that can enhance the benefits of digitalization.

Fourth, we examine whether reliability improves using within-utility data on power out-
ages in Texas. We find that outage duration decreased by 6.8-7.8% following AMI deployment
on average, suggesting that utilities use smart meters to restore power faster, consistent with
improved energy management.” However, we find no change in outage frequency, suggesting
that additional capabilities or other solutions may be needed to avoid outages altogether.

Taken together, our findings indicate that digitalization can enhance utility performance
and service quality through energy management improvements. Complementary organiza-
tional capital is likely important for maximizing the benefits, which raises the question of
which utilities invest in new business processes and skills. We explore this by examining
whether there is heterogeneity across ownership type. Utilities can be either government- or
privately-owned, resulting in different incentives and constraints (Hart, Shleifer and Vishny
1997; Shleifer 1998; Duggan 2000), and utilities’ technology adoption decisions may differ by
ownership type (Rose and Joskow 1990).% For example, investor-owned utilities face pressure
to generate short-term returns for shareholders, which incentivizes efficiency but may come
at the expense of longer-run investments that serve public interests (Flammer and Bansal
2017). Government-owned utilities may have longer time horizons and be more likely to
prioritize social objectives because their customers are their constituents. Consistent with
this line of reasoning, we find that loss rate improvements are driven by government-owned

utilities. Differences in other utility characteristics do not account for the heterogeneity.

"Smart meters notify utilities immediately when outages occur, allowing utilities to respond faster. More
detailed data also helps utilities identify the cause and its location so they can solve the issue quicker.
8Privately-owned utilities include investor-owned utilities and cooperatives.



2 Related Literature and Contributions

This paper speaks to four main sets of literature. First, most specifically, we provide new
evidence as to whether (and how) digitalization can improve electric utility performance
and service quality. Ensuring access to high-quality and reliable electricity is first-order for
fostering modern economic activity and quality of life. When the power goes out, schools shut
down, traffic lights stop working, and life-sustaining medical equipment no longer functions.
However, electricity infrastructure is deteriorating in many countries, and utilities are facing
rising costs along with new energy management challenges. The share of energy supply
coming from intermittent renewable resources—which must be balanced with demand in
real time—and electrification of end-use products (e.g., vehicles) are increasing, putting
more pressure on the grid and requiring new capabilities from utilities.

With these shifting market dynamics and the need to transition to a cleaner, more
sustainable economy, understanding how to manage the grid efficiently is more crucial than
ever. Although experts agree on the need for significant grid investment—and policymakers
carved out $13 billion for grid modernization in the 2022 Infrastructure Investment and Jobs
Act—Tlarge-scale empirical studies of how smart meters impact service provision and utility
performance have been missing.” On the consumer side, Brandon, Clapp, List, Metcalfe and
Price (2022) and List, Metcalfe and Price (2018) examine how smart technology impacts
energy use in the U.S. and U.K., finding no significant effects. A related but distinct literature
examines whether interventions facilitated by smart meters, like providing information and
introducing new pricing designs, impact consumption (Wolak 2011; Jessoe and Rapson 2014;
Ito, Ida and Tanaka 2018; Bollinger and Hartman 2020; Burkhardt, Gillingham and Kopalle
2023; Blonz, Palmer, Wichman and Wietelman forthcoming). To the best of our knowledge,
we are the first to examine how utilities use these digital technologies to improve energy
management and the impacts on system performance and service quality.

Research on the economics of electricity resiliency in developed countries also remains

scant (Borenstein, Bushnell and Mansur 2023)." The emerging literature includes two

9The American Recovery and Reinvestment Act of 2009 provided $4.5 billion for smart grid investments.
0There is a more extensive literature on reliability in developing countries (Fisher-Vanden, Mansur and
Wang 2015; Trimble, Kojima, Arroyo and Mohammadzadeh 2016; Allcott, Collard-Wexler and O’Connell
2016; Zhang 2018; Carranza and Meeks 2021; Meeks, Omuraliev, Isaev and Wang 2023; Berkouwer, Biscaye,



working papers examining technology adoption to study the value of reliability (Bollinger,
Gillingham, Darghouth and Gonzalez-Lira 2023; Brown and Muehlenbachs 2023).

Second, more broadly, our paper contributes to the quickly-evolving literature studying
how digitalization and data-driven decision-making impacts organization performance. Re-
search related to the adoption of information and communications technologies dates back
to at least the 1990s (see Draca, Sadun and Van Reenen (2009) and Goldfarb and Tucker
(2019) for reviews). With managers having access to increasingly vast amounts of data, this
literature continues to evolve, but the focus primarily has been on firms in the private sector
(Brynjolfsson and Hitt 2000; Bresnahan et al. 2002; Brynjolfsson and Hitt 2003; Bartel et
al. 2007; Bloom et al. 2012; Brynjolfsson and Saunders 2013; Brynjolfsson and McElheran
2016; Goldfarb and Tucker 2019; Brynjolfsson et al. 2021ab; Bar-Gill et al. 2024).

Whether digitalization improves public services has gone relatively under-studied despite
their crucial role in maintaining well-functioning economies and high standards of living.
Healthcare is one exception (see Bronsoler, Doyle and Van Reenen (2022) for a review), but
this literature tends to face two key limitations that we are able to overcome by studying the
electricity sector. First, quality of services is notoriously difficult to measure. Mortality is a
commonly-used indicator, which captures an important outcome that may be correlated with
quality of service but does not measure quality of service directly.!! By studying electricity
service providers, we are able to use precise, objective, and systematically reported indicators
of performance and service quality. The second challenge is that data restrictions often lead
researchers to studying a specific type of provider (e.g., hospitals as opposed to all physicians
and specialists) and therefore a select set of customers (e.g., inpatients). With our data, we
can study nearly all service providers across an entire industry within a country.

The third line of research to which our paper contributes relates to how management
shapes organization performance. Similar to the digitalization literature—and perhaps even
more so—most research in this space focuses on the private sector. In addition to early
case studies and descriptive analyses of firms’ management practices, an extensive empirical

evidence base documenting the importance of management quality for firm performance has

Mikdash, Puller and Wolfram 2024), but the challenges (and therefore solutions) are fundamentally different.
"UPeople may pass away because of their conditions even if the quality of service is perfect. Some measures
of service quality itself might include time spent with patients, diagnosis processes and accuracy, etc.



emerged with the availability of large-scale microdata (Bloom and Van Reenen 2007; Bloom,
Brynjolfsson, Foster, Jarmin, Patnaik, Saporta-Eksten and Van Reenen 2019; Gosnell, List
and Metcalfe 2020). However, very little is known about management of public services. A
related nascent literature examines managers in the public sector (Janke, Propper and Sadun
2019; Otero and Munoz 2022; Fenizia 2022), but individual attributes and organization-
level practices are two separate channels through which management impacts performance
(Metcalfe, Sollaci and Syverson 2023). Bloom, Lemos, Sadun and Van Reenen (2020) and
Bloom, Propper, Seiler and Van Reenen (2015a) study the role of location and competition
for hospital performance and management, respectively, but not the effects of management
on services. Bloom, Lemos, Sadun and Van Reenen (2015b) show that higher management
quality in schools is correlated with better student outcomes, but data limitations prohibit
a causal analysis.

Lastly, we provide new insights on public versus private provision of services. Under-
standing the implications of firm ownership is a long-standing issue in economics and private
provision of public services is particularly controversial. However, research to date mostly
focuses on financial outcomes.'> We do not estimate the effects of privatization, but we add
to this literature by documenting heterogeneity in the effects across ownership type, which
provides insight into the importance of managerial incentives for realizing the benefits of
digitalization. That is, although privately-owned utilities have incentives and requirements
to improve quality of service as well, they face short-term pressures to generate financial
returns for shareholders. On the other hand, when organizations have longer time horizons

and focus on social objectives, their investments may generate greater performance benefits.

3 Background on Power Sector and Research Setting

This section provides background on our research setting, including an overview of electricity
distribution systems in the U.S., the role of utilities (i.e., service providers) and energy

management, indicators of utility and system performance, and how digitalization could

12Recent exceptions study the impact on prison inmates (Mukherjee 2021) and healthcare consumers
(Bergman, Johansson, Lundberg and Spagnolo 2016; Duggan, Gupta, Jackson and Templeton 2023) but not
on service quality directly.



theoretically improve performance and quality of service.

3.1 Electricity Distribution in the U.S.

Electric grids are complex networks that deliver power to consumers. They are comprised
of high-voltage transmission lines that transfer electricity from power plants to population
centers through high-voltage transmission lines (the “interstate highway” of the grid) and
distribution systems that then deliver the power to end-users (residential, commercial, and
industrial customers). Distribution systems include substations, transformers that reduce
(“step down”) voltage to the level required for end-use appliances and equipment, lower
voltage power lines (the “last mile”), meters that monitor consumption located on end-
users’ premises, as well as customer services. The U.S. distribution system is expansive,
serving 145 million end-users through 5.5 million miles of distribution lines (EIA 2016).
Access to high-quality and reliable electricity is important for maintaining a well-
functioning economy and quality of life, but the distribution system in the U.S. is aging
quickly and increasingly susceptible to disruption. Approximately 70% of transmission and
distribution (T&D) lines were constructed in the early- to mid-1900s and are now in the
second half of their life expectancy (ASCE 2021). Inadequately upgraded and poorly main-
tained infrastructure can come with serious consequences for power quality (e.g., voltage
fluctuations) and reliability (i.e., outages). The distribution system is responsible for 92% of
the country’s power interruptions (ASCE 2021), which are driven by a combination of aging
infrastructure, severe weather, and various aspects of utility and energy management.'
Poor power quality can be disruptive and costly. Residential customers may experience
low voltage and voltage fluctuations as dimming or flickering lights, but significant drops also
can damage end-use products, which can be especially costly for commercial and industrial
customers. Even minor voltage fluctuations can ruin expensive machinery and shut down
production processes. Reliability in the U.S. also has been declining. The average customer
experienced about 5.5 hours of power interruptions in 2022, up from a little over 3.5 hours
in 2013, and it is far worse in some parts of the country (EIA 2024). Outages sometimes

are just inconvenient but also can be life-threatening, such as when they affect electronic

13We expand upon the role of utilities in Section 3.2 and measurements of performance in Section 3.3.



medical devices and transportation systems.

3.2 Role of Utilities

Electricity distribution in the U.S. is managed by approximately 1,300 utilities that are
responsible for maintaining the grid as well as selling and delivering electricity that can meet
end-users’ needs.'* Utility performance and energy management, therefore, play a pivotal
role in ensuring high-quality and reliable electricity service. Energy management entails
optimizing assets and operations as well as planning, controlling, storing, and distributing
electricity. Utilities also must remain fiscally sustainable by maximizing efficiency, generating
revenue, and minimizing costs (e.g., distribution system upkeep and repairs, billing processes,
emergency response, safety and regulatory compliance, and customer service).

Poor utility practices can lead to poor system performance and reliability. Although
many outages in the U.S. are caused by extreme weather events, like storms that knock down
power lines, about two hours of the power outage time per year experienced by the average
U.S. customer over the last decade have been due to non-major events (i.e., causes besides
extreme weather events) (EIA 2024). Non-major event outages even accounted for most down

° For example, inadequate maintenance, upgrading, and vegetation

time in some states.!
management can make the system more susceptible to disruption. Supply and demand also
must be balanced in real time. Weather events, therefore, can impact system performance
not just by knocking down power lines but also through utilities’ capacity to manage spikes
in demand due to the use of air conditioning and heat, which can lead to overload (i.e.,
demand exceeding capacity) and equipment malfunction. Demand growth on the horizon
due to data center build-out as well as the increasing proportion of electricity supply coming

from intermittent renewable resources also introduces new energy management challenges

for utilities.

14The U.S. has more than 3,200 electric utilities when also counting those responsible for generation and
transmission. Some utility activities differ if they also control those components.
5For example, this was the case for West Virginia, Maine, and several other states in 2022 (EIA 2024).
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3.3 Electricity Losses as Key Performance Indicator

There are various ways to evaluate the performance of electricity distribution systems, which
in turn, reflect utilities’ performance with respect to delivering high-quality and reliable
power as well as their financial standing. We primarily focus on one of the key perfor-
mance indicators set out by the Institute of Electrical and Electronics Engineering (IEEE)’s
standards: electricity losses.

From the point at which electricity is generated and supplied to the T&D system to when
it is consumed, some proportion of it is lost at various stages; however, the extent of losses
differs across settings. Electricity losses are, therefore, often considered an important indi-
cator of the “efficiency and financial sustainability of the power sector” (Jiménez, Serebrisky
and Mercado 2014). Those occurring as electricity travels throughout transmission and dis-
tribution are referred to as line losses, calculated as the difference between the electricity
supplied to the grid and the amount for which customers are billed. The loss rate—the per-
centage of electricity lost relative to total electricity supplied to the system—thus captures
the overall efficiency of the system and performance of utilities responsible for managing it.

Transmission and distribution losses are frequently in the 6-8% range for high-income
countries but can be as low as 2-3%, indicating that there is still room for improvement in
many cases. For example, according to 2014 data from the World Bank, total transmission
and distribution losses were 2% in Singapore, 3.4% in South Korea, and 3.9% in Germany.

Electricity losses are caused by both “technical” and “non-technical” factors. Technical
losses occur naturally due to the physical properties of the system, such as conductor re-
sistance, and mainly consist of power dissipation along distribution lines and transformers.
Some degree of electricity losses are thus unavoidable. However, losses are higher when the
system is poorly managed. For example, since losses increase as equipment ages, high losses
could reflect a history of insufficient maintenance and upgrading. Losses are also exacerbated
by factors like system overload (i.e., demand exceeding supply), which can occur if utilities
do not adequately balance demand and supply or if demand unexpectedly spikes. Voltage
fluctuations can exacerbate losses as well (Jiménez et al. 2014), which in turn, causes system

instability or even collapse.'®

6 Furthermore, as energy losses transform into heat (they are resistance multiplied by the current squared),
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“Non-technical” losses (NTLs), on the other hand, are caused by factors external to
the system. They are caused by issues like illegal cable hooking—which allows people to
bypass meters and consume electricity without paying for it—or incorrect electricity meter
readings due to outdated and damaged technology, human error by utility workers, or meter
tampering by customers. Although non-technical losses are more frequently associated with
low and middle income countries—where they are indeed higher, on average—NTLs are also
common in high-income countries like the U.S.

In addition to improving system efficiency for the sake of providing high-quality and
reliable power to customers, reducing electricity losses is also increasingly important for
utilities to remain financial viable. Electricity losses represent lost revenue, and utilities’
financial standing plays a role in determining their capacity to make system investments
and provide good service. Furthermore, utilities still must pay for electricity delivered to
the system even if it is not billed to or paid for by end-users, and as utilities must purchase
enough to meet actual demand plus losses, the amount purchased increases with expected
losses. Consumers also may bear some of the costs, as they tend to be passed through to

prices or other charges on electricity bills.

3.4 How Digitalization Can Improve Performance

Proposals to improve electricity systems and utility performance often include moderniz-
ing the grid with digital technologies and enhanced energy management. Until the early
2010s, most electricity meters—the devices located on customers’ premises to track electric-
ity usage, primarily for billing purposes historically—were antiquated and unsophisticated
(Munasinghe 1981). The majority of customers still had conventional electro-mechanical
meters that were developed in the late 1800s and predate other now obsolete technologies,
such as the rotary phone (Public Utility Commission of Texas 2010). The functionality of
these older meters is extremely limited. They require many tasks to be performed manually
in person, such as reading meters to calculate the amount of power used during a billing

period and manually disconnecting and reconnecting customers (e.g., when customers move

they can subsequently lead to lines stretching and sagging such that they come into contact with surrounding
objects and cause a fault, which also can permanently damage the line and other equipment (FERC 2020).
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or have not paid their bills). And when outages occur, utilities would rely on end-users to
report them and field crews to locate and identify the outage source in person.

Recent advances in digital technologies and data generation, transmission, and storage
are opening up new opportunities for utilities to improve performance and the quality of
service that they provide, though. Digitalization in the electricity context entails investing in
advanced metering infrastructure (AMI)—an integrated system comprised of “smart” meters
installed at end user premises, a communication network (either wired or wireless) to transmit
information between meters and the distribution company, and data management systems
(Gold et al. 2020). Smart meters provide high-frequency electricity data—usually at least
at the hourly or 15-minute level—to utilities and end-users remotely. Investments in AMI
initially progressed slowly in the U.S. but increased rapidly through the 2010s. Appendix
A1 provides additional institutional background on the drivers of AMI deployment in the
U.S. The electricity sector’s “digital revolution” extends well-beyond the U.S. as well.!”

In the paragraphs that follow, we elaborate upon the potential functions of and ben-
efits from AMI. Although these are frequently enumerated in technological and industry
reports, there is little empirical evidence as to how these functionalities are employed—and

the benefits accrued as a result—by utilities in practice.

Mechanical Benefits. Some features of AMI technology can improve performance mechan-
ically (i.e., with just deploying meters without additional action) and practically immedi-
ately. For example, smart meters often have the functionality to shut down grid connections
automatically if voltage spikes or dips outside of the range that is safe and appropriate for
end-use products and equipment. This can help prevent unplanned outages, and in turn,

protect equipment from being damaged and reduce the probability of future disruptions.

Automated Billing and O&M Costs. Deploying smart meters can induce almost imme-
diate cost savings and customer service benefits related to remote collection of consumption
data and automating billing processes. With conventional meters, utilities incur significant
labor and transportation costs associated with deploying workers to gather electricity use

data onsite for billing purposes. Remote provision of consumption information and auto-

17Tn 2013 alone, approximately $15 billion were invested in smart grids worldwide (IEA 2015).
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mated billing processes can, therefore, substantially reduce billing costs.'® These operational
efficiency gains can be substantial and improve the customer experience, although the net
effect on labor costs depends on the extent to which the utility also hires workers with other
skills when shifting to AMI (e.g., computer scientists and software engineers who can analyze

high-frequency data and improve dispatch models).

Reducing Technical and Non-Technical Line Losses. Utilities have additional op-
portunities to reduce technical and non-technical electricity losses when they deploy AMI.
With respect to NTLs, rolling out smart meters can lead to utility workers identifying meter
tampering and other forms of energy theft when replacing meters. Remote data transmis-
sion from smart meters also can reduce NTLs associated with incorrect meter readings, as it
circumvents the need for estimating consumption or interpolating bills when in-person meter
readings are not possible, decreasing human error in the billing process (Nangia, Oguah and
Gaba 2016; Cooper and Shuster 2021). These improvements can also lead to reductions in
customer complaints and faster resolution of billing disputes (U.S. Department of Energy
2016a). At the same time, if the incumbent technology consistently under-measured actual
consumption, bills may increase following smart meter deployment even if actual consump-
tion does not change. Utilities’ financial standing may therefore improve through enhanced
revenue recovery, but the effects on customer satisfaction are ambiguous.”

When fully leveraging the high-frequency nature of the data generated, smart meters also
can help utilities reduce technical line losses, especially if they also invest in complementary
AMI technologies that provide information on power flows and quality as well as developing
or acquiring the skills required for analyzing such data. The combination of more precise
data with advanced analytics can allow utilities to improve energy planning and supply-

demand balancing, such as by improving their demand forecasts, as well as identify consistent

18Tndeed, this is one of the most frequently cited motivations for utility investment in AMI (U.S. Depart-
ment of Energy 2016b). Prior to AMI, some utilities replaced conventional electro-mechanical meters with
automatic meter reading (AMR) systems, which can broadcast consumption data within a very limited dis-
tance and permit remote disconnection (USAID 2009). These provide some operational cost savings relative
to electro-mechanical meters, as employees could collect consumption data by driving around neighborhoods;
however, their capabilities fall short of AMI and they still involve higher labor and transportation costs.

19Tt could increase satisfaction if consumers value billing accuracy or if billing errors previously created
distrust. However, customers may dislike facing higher bills for the same quantity of electricity power
previously consumed if old meters systematically under-measured true consumption.
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bottlenecks or places where the grid is consistently constrained (Nangia et al. 2016; Gold et
al. 2020). These types of insights can help inform asset optimization and investment decision-
making, and in turn, lower electricity losses. Utilities also can use other AMI components in
conjunction with smart meters to enhance voltage monitoring capabilities, which can reduce
line losses and improve power factors (U.S. Department of Energy 2016b).

Smart meters also provide opportunities for utilities to offer new products, such as de-
mand response programs and dynamic pricing schemes, which may enhance customer satis-
faction while also providing opportunities for improving service and reducing losses as well.°
Demand response programs provide utilities with greater control over supply and demand.
More granular data and two-way real-time communications through smart meters can en-
hance their ability optimize power flows throughout the day and reduce demand during peak
periods (Costa-Campi, Davi-Arderius and Trujillo-Baute 2018). Dynamic pricing schemes
that set prices higher during peak demand periods also provide opportunities for achieving
similar outcomes depending on consumer response (i.e., if customers shift energy use away
from peak periods). Such products also empower customers to lower their electricity bills,

which may enhance customer satisfaction.

Reliability Benefits. Lastly, utilities can use smart meters to reduce power outage duration
and/or frequency, improving the reliability of service for end-users as well as the financial
performance of utilities. Voltage quality data can help utilities identify potential weak points
in the system or recurring bottlenecks, which can lead to reduced outages if utilities address
these issues with energy planning adjustments or system upgrades. Utilities also can use
smart meters to respond to outages faster when they do occur, reducing the amount of time
it takes to restore power. For instance, AMI meters are often equipped with “last gasp”
alarms that inform utilities immediately of service disruptions, which also then provides
more precise location information to identify the outage’s original source (U.S. Department
of Energy 2014c). While the alerts are mechanical through the technology’s features, the

degree to which such features reduce power outage duration and the associated costs hinges

20These types programs could be implemented to some degree with intermediary technologies deployed
prior to AMI, like automated meter reading (AMR), but the data granularity and frequency allow for much
more precision.
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upon utilities dispatching repair crews appropriately.?!

4 Data and Sample Construction

We construct and use three data sets throughout this paper. The first is at the utility level,
linking information on U.S. electric utilities’ performance, characteristics, and smart meter
deployment, which we use for the majority of our analyses. We construct two additional
data sets for exploring the mechanisms driving our results: feeder line-level data on power
outages for Texas and regional-level occupation data for the U.S. This section provides an

overview of the data; additional details can be found in Appendix B.

4.1 Smart Meter Deployment and Utility Performance

To compile utility-level data on smart meter deployment and performance, we start with
data from the U.S. Energy Information Administration (EIA)’s annual census of all electric
utilities in the U.S. (Form EIA-861). It includes information on smart meter deployment,
performance measures such as electricity losses and sales, operational data, dynamic pricing
and demand response programs, and select utility characteristics. We collect data for the
years 2007 (the first year in which AMI deployment data are available) through 2017 to
construct several key variables of interest.

First, we create the variables for initial smart meter deployment (our main treatment
variable) and deployment rates (the intensity of treatment). We use the number of electric
meters that fall within each meter type (conventional or AMI) and use the first year in
which the number of AMI meters is greater than zero as the year of initial smart meter
deployment. We measure deployment rate as the ratio of total AMI meters to the total
number of customers. Figure 1 illustrates the significant deployment of AMI through the
time period that we study.?? There is very little deployment as of 2007, while the proportion

of customers with AMI increases dramatically by 2017.

21These potential improvements are frequently reported as a motivation for smart grid investments in
various government reports and on utilities’ websites (U.S. Department of Energy 2014ab; Duke Energy
Progress 2020; BC Hydro 2016; Sprinz 2018).

22Note that, while we study deployment of AMI at the utility level in our regressions, the figures show
deployment rates by county.
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We also use EIA data to construct our utility performance measures, including the elec-
tricity loss rate (which is the percentage of total disposition that is lost through transmission
and distribution), total sales and sales per customer (both in megawatt hours), revenue per
customer (which reflects customers’ average annual spending on electricity bills), and rev-
enue per unit sold (which reflects the average annual electricity price). The EIA data reports
electric operating revenue from different sources, including retail sales to end-users, delivery
customers, sales for resale, transmission, and other electric activities. We take the sum of
these to get total revenue. Furthermore, we use these data to identify whether utilities of-
fer products like demand response programs and dynamic pricing, including the number of
customers enrolled and the year in which such services were introduced (using the first year
in which there are more than zero customers enrolled).

Lastly, we gather additional information on utilities’ time-invariant characteristics like
location and service territory from EIA-861, and ownership type and business scope from

S&P Global Market Intelligence.

4.2 Service Territory Population and Housing

We use two other key pieces of information throughout our main utility-level analyses—local
population and new building construction—that we collected from other sources. We ob-
tained county-level population data from the Survey of Epidemiology and End Results
(SEER) and data on new building units from the U.S. Census’ Building Permits Survey
(BPS). Using the electric service territory information from EIA-861, we merge these county-
level population and housing data with the EIA utility-level data, summing the population

and housing measures for all counties that the utility serves.??

4.3 Sample Construction and Summary Statistics

After merging the data sets described above, we take a few additional steps to prepare the
data for our empirical analyses that we detail in Appendix B. One important sample selection

rule that we apply is omitting utilities that do not operate in the distribution segment of

23Some counties are served by multiple utilities, so there is some double-counting of population and
housing, but such measures are not available at the utility level. This should not bias our estimates, though.
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electricity delivery. Also, for utilities with AMI, we keep only those that initially started to
deploy AMI between 2010 and 2016 (while keeping all utilities that never deploy and while
keeping observations from 2007 through 2017). This allows us to include at least three years
of pre-treatment data and one year of post-treatment data for all utilities that deploy AMI
through our sample period. We also omit observations for which our key variables appear
to be data entry errors (such as negative values for losses, sales, and customer counts).

Our final utility-level data set includes 14,241 observations across 1,303 utilities in the
U.S. between 2007 and 2017.2* Table 1 provides summary statistics. Column 1 provides the
means and standard deviations of our main variables of interest for the full estimation sample.
The average percentage of sales lost is about 5.7% and utilities serve about 57,000 customers
on average. We also provide summary statistics separately for adopters in pre-treatment
years (Column 2) and non-adopters (across all years) (Column 3) to explore whether they
exhibit different characteristics. Those that eventually adopt AMI have slightly lower losses
per sale in pre-treatment years relative to non-adopters but are much larger on average, as
can be seen from how total sales and the number of customers served. We describe how we
address this in our empirical approach in Section 5.

Appendix Figure D1 illustrates utilities’ deployment of AMI over time—a key source of
variation that we use in our research design. In Panel A, we plot the cumulative proportion
of utilities in our sample with any AMI deployed. In Panel B, we limit the sample to utilities
that started to deploy AMI between 2010 and 2016 to show the distribution of utilities
by initial deployment year for treated utilities in our estimation sample. We also plot the
average of utilities” AMI meters over the number of customers (i.e., the average proportion of
utilities’ customers with AMI) by number of years since initial deployment (Panel C), which
suggests that, customer adoption is relatively quick once deployment begins, with more than

50% of utilities’” customers having AMI after one year (on average).

24Because of the instrumental variable approach that we take, we actually gather data for the year 2018
as well, but 2018 is omitted when running the regressions because of using the lead policy variable as an
excluded instrument (see Section 5).
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4.4 Additional Data

4.4.1 Regional Occupation Employment

When exploring mechanisms through which AMI affects utility performance, we examine
worker composition. We assemble data on local occupation employment for each Metropoli-
tan (MSA) and non-metropolitan (non-MSA) area from the Occupational Employment and
Wage Statistics (OEWS) provided by the U.S. Bureau of Labor Statistics (BLS). We extract
the area-level employment information for the 2007-2018 period. Although these data do
not differentiate occupations from industries, all meter readers are associated with the utility
sector, whereas other occupations could be in various sectors.?” As a result, occupations such

as meter readers may be associated with non-electric utilities (e.g., gas or water) as well.

4.4.2 Electricity Reliability in Texas

To explore whether utilities use smart meters to improve electricity reliability, we examine
the impact of AMI deployment on power outage duration and frequency for the state of

Texas.?S

We manually transcribed and compiled outage data at the feeder line level—the
power lines that carry electricity from substations to local or regional service areas—from the
Public Utility Commission of Texas. Reliability is measured by two standard indices: System
Average Interruption Duration Index (SAIDI) (the average duration of outages within a year)
and System Average Interruption Frequency Index (SAIFI) (the average number of outages

per year). This feeder line-level data set covers 7,294 feeder lines across 10 utilities operating

in Texas between 2007 to 2016.

25We verified this with state-industry level employment data. We collected data on employment estimates
by state and industry from the U.S. BLS derived from sample surveys, which provides annual industry-
specific estimates on the number of employment for each occupation category in each state after 2012. Using
this data, we confirm that the occupation category associated with meter readers (i.e., 43-5041) only appears
within utility industry (i.e., the corresponding two-digit NAICS code is 22).

26We study Texas because the U.S. outage data do not start until 2013 and, by that time, many utilities
had already started to deploy AMI. In contrast, the Texas within-utility data starts in 2007.
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5 Empirical Strategy and Identification

5.1 Research Design

Our primary goal is to identify the causal impact of smart meter deployment on utility
performance with a focus on the electricity loss rate. Estimating the effects using OLS
may be plagued by various sources of endogeneity. Utilities that choose to invest in AMI
may differ systematically from those that do not—they may already be better-managed or
more innovative, or alternatively, they may be experiencing a systematically more significant
decline in performance that motivates them to invest in AMI. The likelihood of deployment
also may be correlated with local economic growth or other market characteristics that
simultaneously impact electricity losses.

To address these concerns, we exploit quasi-experimental variation in utilities” AMI
smart meter deployments and augment a staggered difference-in-differences model with a
two-stage least squares (2SLS) approach that directly addresses a key source of endogeneity.
To summarize, our enhancement is in the spirit of the methodology developed by Freyalden-
hoven et al. (2019), who show how instrumenting a “proxy” variable that is correlated with
a potential confounder—but not driven by the treatment—with the lead of the policy treat-
ment can identify the causal effect of the treatment. The method provides estimates of the

treatment effect net of the pre-trend effects.?”

Foundation of Model. Before discussing the 2SLS empirical strategy that we use through-
out our analyses, we start by describing the foundation of our model that we build upon—event
studies and staggered difference-in-differences. Using the first year that a utility deploys AMI
smart meters as the treatment year, we start with an event study model that compares before

and after differences in outcomes relative to the initial deployment year as follows:

Yii = Z Brlt — 7 = k] + o + st + 0X i + €t (1)
kA1

where Y}, denotes the respective outcome measure of interest for utility ¢ in year t. We

27See Freyaldenhoven et al. (2019) for details on identification and we provide evidence of the pre-trend
removal in our results section.
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are primarily interested in [y, the coefficients on indicator variables representing the AMI
deployment event years, whereby we use the first year when utility ¢ deploys smart meters as
the treatment year and k represents the gap between the current year ¢ and initial deployment
year 7;. We exclude the dummy for £ = —1 so that the pre- and post- treatment effects are
relative to one year prior to the start of AMI deployment.

We include utility fixed effects (a;) to control for time-invariant differences between
utilities and state-year fixed effects (vs) to account for state-specific time-varying factors,
such as market and policy conditions. We also control for local observable time-varying
characteristics in the matrix X;; (new building construction and population in counties
within the utility’s service region).?® We cluster standard errors at the utility level.

To summarize the dynamic effects of AMI adoption, we estimate the average effect

within a pooled staggered difference-in-differences framework as follows:

Yii = B1AMIL; + i + v + 0’ Xyt + i, (2)

where Y}; denotes the outcome of interest for utility ¢ in year ¢, AMI;; is the main treatment
indicator for smart meter adoption equal to one starting in the year the utility has deployed
AMI and zero otherwise. We include the same set of fixed effects and controls as before and
cluster standard errors at the utility level.

If we were to make no other adjustments, identifying the causal effects would rest upon
three main assumptions: 1) utility-level outcomes would have evolved along parallel trends
absent treatment, 2) the average treatment effects do not vary by treatment timing, and
3) there are no spillover effects on untreated utilities (i.e., the stable unit treatment value
assumption (SUTVA) holds). We now discuss the ways that we address potential violations

of these assumptions.

2SLS Augmentation.— The event study approach of Equation 1 allows us to explore
the dynamic effects of smart meter deployment. We can examine whether there appear

to be differences in outcomes for untreated and treated units in pre-treatment years (i.e.,

28We use the inverse hyperbolic sine of new building construction because it contains zeros and use the
log of population.
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whether there are pre-trends), which has been the common practice for indirectly investi-
gating whether the parallel trends assumption holds. However, recent studies note that such
tests may be insufficient, as they may fail to detect pre-trends simply due to low statistical
power (Freyaldenhoven et al. 2019; Roth 2022; Roth, Sant’Anna, Bilinski and Poe 2022). In
a study of electric utilities, the concern is that even after including utility fixed effects, state-
year fixed effects, and controls for some market trends in our baseline regressions, unobserved
confounds may still exist.

In our setting, the main concern is that we cannot directly control for all local time-
varying market and regional characteristics that may simultaneously impact the decision to
deploy smart meters and performance. To address this, we follow the approach developed
by Freyaldenhoven et al. (2019), which allows for causal identification of the treatment by
removing the potential effects of pre-trends using a 2SLS approach. One must find a “proxy”
variable for the unobserved confounder, and instead of simply including the variable as a
control, instrument for it using leads of the treatment variable. The key assumption is that
the “proxy” is affected by the unobserved confounder (e.g., economic growth) but not driven
by the treatment.?”

The main task, therefore, is to find a variable that follows a pattern similar to that
which we expect the unobserved confounder to exhibit but which is not driven by AMI
deployment. We propose and use population as our proxy, as it is plausibly correlated with
economic growth and the related endogeneity concerns, but importantly, it is highly unlikely
that AMI deployment is a key driver of population growth.

To empirically explore whether population may be a suitable proxy, we estimate Equa-
tion 1 with (log) population as the dependent variable and plot the coefficients in Appendix
Figure D2.%° Indeed, population increases over our sample period for utilities that deploy
AMI relative to non-AMI utilities, suggesting that population is a reasonable proxy. As long

as AMI deployment is not driving population growth, instrumenting for population with the

29 As detailed in Freyaldenhoven et al. (2019), the approach removes the pre-trend effect such that estimated
effects are net of the confound (i.e., the remaining dynamics of the outcome represent the causal effect).
Freyaldenhoven et al. (2019) show that this approach outperforms alternative methods commonly applied in
the literature to address potential pre-trends.

30As discussed earlier, we observe population at the county level, so we take the sum of the population in
counties that fall within the utility’s service territory.
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treatment variable lead allows us to recover the causal effect of AMI.

5.2 Addressing Other Potential Identification Concerns

Treatment Timing. Staggered difference-in-differences models may produce biased esti-
mates if treatment effects are heterogeneous across units and over time (Goodman-Bacon
2021; Callaway and Sant’Anna 2021; Sun and Abraham 2021).3! For reasons similar to the
potential endogeneity of AMI deployment timing, one may be concerned about such hetero-
geneity in our setting. Some utilities may be more innovative and thus adopt earlier, and
more innovative utilities may more effectively improve quality of service by leveraging the
technology’s data and communications capabilities. Local economic growth also may induce
utilities to adopt at different times, and if those utilities have more resources, the treatment
effects may vary. Our 2SLS strategy directly addresses these concerns, but to be sure they
do not bias our results, we also implement some of the other newly developed approaches as

robustness checks in Section 6.4.

SUTVA. As is the case for any difference-in-differences research design, one key assumption
behind our approach is that there are no spillover effects on untreated units. In our setting,
the assumption is that a utility’s deployment of smart meters does not affect other utilities’
outcomes. This could be violated if, say, smart meters reduce line losses for a treated utility
and this benefits neighboring utilities that do not invest in AMI by reducing pressure on their
system as well, as all distribution lines are ultimately connected to an interdependent grid
and electricity flows across service territory boundaries. Spillovers are most likely to occur
between utilities that share borders. Such spillovers should attenuate our results if anything,

but nonetheless, we probe this by carrying out various robustness checks in Section 6.4.2.

31Estimates from models like the one depicted in Equation 2 are weighted averages of all possible 2x2
difference-in-differences between treated and untreated groups at different points in time and, therefore, may
be biased if effects are heterogeneous across units or over time and result in negative weights.
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6 Main Results: Effects of AMI on Electricity Losses

This section presents both our main results from estimating the impacts of smart meter
deployment on electricity losses as well as robustness checks probing the identification as-

sumptions of our research design.

6.1 Dynamic Effects

To begin, we estimate the dynamic effects of utilities’ smart meter roll-outs on our primary
measure of utility performance—the electricity loss rate—employing the 2SLS estimator
that extracts pre-trends by instrumenting our “proxy” variable (population) with a one-
year lead of the treatment variable as the excluded instrument. Doing so illustrates our
main findings for performance improvement while also allowing us to investigate whether
our 25LS approach addresses the endogeneity concerns discussed in Section 5.

We plot the estimated coefficients ), and their 95% confidence intervals in Figure 2,
with the z-axis indicating the number of years relative to initial AMI deployment. Imme-
diately following AMI deployment, the loss rate starts to decline. The decrease is small at
first but continues to steadily drop over time, leveling off after about 3 years post-treatment.
Increasing improvements over time are consistent with the benefits of technology adop-
tion—particularly digital technologies with complex capabilities—needing time to material-
ize. Utilities may need to invest in complementary technologies and organizational capital,
like new processes and acquiring workers with different skills, to fully reap the rewards, sim-
ilar to other contexts (e.g., Brynjolfsson and Hitt 2000; Bresnahan et al. 2002; Brynjolfsson
et al. 2021a; Bronsoler et al. 2022).32 The benefits of AMI also may scale with deployment
intensity. We explore the magnitude of the effects over time further in the next sub-section.

Furthermore, we estimate the effects separately for the bottom quartile of the pre-
treatment loss rate distribution and those above the bottom quartile, since the potential
to reduce losses likely differs depending on baseline rates.®® The estimates are plotted in

Appendix Figure D3. For utilities above the bottom quartile (i.e., those with higher loss

32Cutler (2011), among others, also makes this point when studying IT adoption in healthcare settings.
33For utilities that deploy AMI at some point throughout our sample period, the cutoff for the bottom
quartile of pre-treatment loss rates is 3.8%.
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rates), the results are very similar to our main findings (Panel A), and reassuringly, we find
no change in the loss rate for those that were already performing well (i.e., those in the
bottom quartile of the pre-treatment loss rate distribution (Panel B).

Finally, the dynamics illustrated in Figure 2 also provide confidence in our 2SLS research
design when comparing them to results from a standard OLS estimation. When taking our
2SLS approach, the differences in the loss rate through pre-treatment years are much more
stable than when using OLS, suggesting that instrumenting our proxy variable with the
treatment lead successfully removes some influence of confounders. See Appendix Figure D4
for a comparison to the OLS results. The OLS estimates exhibit a very slight pre-trend in
the loss rate (Panel A), but this appears to be extracted once making the 2SLS adjustment
(Panel B). The pre-trend is more prominent when looking at total electricity losses (the
numerator when calculating the loss rate) as opposed to just the loss rate. There is a pre-
trend in (log) total losses prior to AMI deployment when estimating using OLS (Panel C),
but this disappears once we implement our 2SLS approach (Panel D).

6.2 Average Effects

We now turn to estimating the average effect of AMI deployment over the post-treatment
period following Equation 2 and implementing our 2SLS approach. We find that the loss
rate decreases by 0.002 percentage points on average (Column 1 of Table 2), representing
a 3.8% reduction relative to AMI adopters’ pre-treatment mean loss rate. These estimates
likely understate the potential utility performance improvements, though, as the sample
includes utilities that already achieve a low level of line losses and thus have very little
room to improve. When omitting utilities in the bottom quartile of the pre-treatment loss
rate distribution, we find that the loss rate declines by 0.003 percentage points on average,
reflecting a 5% improvement relative to the pre-treatment mean (Column 2 of Table 2).
On the contrary, loss rates do not change for utilities that were already performing well, as
expected (see Column 1 of Appendix Table C1).

Intuitively, the dynamic effects plotted in Figure 2 also indicate that efficiency improve-
ments increase over time. Benefits may scale with intensity of treatment (i.e., the proportion

of customers with smart meters), for example, and roll-outs may occur over a couple of years.
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It also can take time for utilities to develop or acquire the skills to fully leverage smart meter
capabilities, or for them to invest in complementary AMI features (like data management
systems) that are important for realizing the benefits of digitalization.

To account for this, we omit the year of initial deployment and the two years that follow
such that we capture the efficiency improvements achieved three years post-deployment and
thereafter.®® When doing so, we find that the loss rate declines by 0.003 percentage points,
reflecting 5.8% efficiency gain relative to the pre-treatment mean loss rate for utilities that
deploy AMI (see Column 3 of Table 2). When omitting utilities in the bottom quartile of the
pre-treatment loss rate distribution, this increases to a 0.004 percentage point decline, which
translates into a 6.7% efficiency gain relative to the pre-treatment mean of AMI utilities
in the sample. Once again, we find no change in loss rates for utilities that were already
performing well when omitting the deployment year and two years thereafter (see Column 2
of Appendix Table C1).

Lastly, to demonstrate the importance of implementing the 2SLS approach, we compare
these results to what we would have found had we used OLS (see Appendix Table C2).
When doing so, the estimates can be interpreted as “unadjusted”—they include both the
true causal effect as well as the confounder effects. We generally still find negative and
statistically significant effects on the loss rate when doing so but the magnitudes are smaller.
When using the full sample using OLS, we find a 1.9% decline relative to the sample mean
compared to the 3.8% effect we find when implementing the 2SLS approach (Column 1 of
Appendix Table C2).

6.3 Continuous Treatment

Given how the benefits of AMI may depend on the proportion of customers that have
adopted—having more AMI meters deployed displaces a greater number of old meters that
may be providing faulty readings, and more generally, it provides utilities with more in-
formation—we also estimate a version of the model with a continuous treatment variable.

We replace our main binary treatment variable with an “intensity of treatment” variable

34 All years of data are still included for utilities that never adopt AMI.
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measured as the proportion of a utility’s customers that have AMI.3°

The results are very similar but a bit stronger relative to when using the binary treat-
ment (see Panel B of Table 2). In Column 1, we find that the loss rate declines by 5.8%
when using the continuous treatment variable in comparison to a 3.8% decline when using
the binary treatment. These results are consistent with the benefits of AMI being more
substantial as a greater proportion of customers adopt AMI, as the coefficients when using
the continuous treatment can be interpreted as the change in the loss rate when going from
no deployment to 100% adoption. Once we omit initially high performers (Columns 2 and
4) and include only later years after 3 years of AMI deployment (Columns 3 and 4), we
find that the results when using the continuous and binary treatments converge.®® This is
likely because, on average, AMI roll-outs occur relatively quickly once they begin. As seen

in Panel C of Appendix Figure D1, about 50% of customers adopt AMI (on average) within
the first year that a utility deploys AMI, increasing to about 70% after 3 years.

6.4 Additional Identification and Robustness Checks

Recent research points to several reasons to be cautious when using OLS to estimate stag-
gered difference-in-difference models. The 2SLS approach that we apply throughout the
paper addressing endogeneity associated with smart meter deployment and adoption aims
to directly tackle some of those concerns. For example, one main strand of the literature
argues that standard tests for the parallel trends assumption (i.e., examining differences in
pre-treatment years) may not detect statistically significant differences simply because of low
statistical power (Roth 2022). Our approach addresses this by extracting potential effects
of pre-trends in the spirit of the method developed in Freyaldenhoven et al. (2019). In this
sub-section, we address two other potential concerns: treatment effect heterogeneity across

time periods and spillovers to untreated units.

35More specifically, this is measured as the utilities’ number of AMI meters over number of customers.
36Estimates from when using OLS can be found in Panel B of Appendix Table C2.
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6.4.1 Adoption Timing

In the multi-period staggered treatment context, coefficients from standard TWFE models
are convex weighted averages that include early-treated units as part of the control group
for later-treated units, and if treatment effects differ based on treatment timing, such es-
timates do not identify an average treatment effect (e.g., see Borusyak, Jaravel and Spiess
(2021), de Chaisemartin and D’Haultfoeuille (2020), Goodman-Bacon (2021), Callaway and
Sant’Anna (2021), Sun and Abraham (2021)).

To deal with this, we implement Callaway and Sant’Anna (2021)’s “doubly robust”
DiD method using stabilized inverse probability weighting. The approach allows group-
time average treatment effects on the treated to be nonparametrically point-identified and
aggregated, whereby a “group” is defined based on the time period when units (i.e., utilities)
are first treated. The results are presented in Appendix Table C3. We first only include
never-treated units in the control group (Columns 1-2) and then also include not-yet-treated
units (Columns 3-4). The point estimates are identical to our main findings in both cases,
remaining statistically significant at the 5% level when including all utilities in the sample and

becoming statistically stronger (to the 1% level) when omitting initially “high-performers.”

6.4.2 SUTVA

Another key assumption underlying all difference-in-differences research designs is that there
are no spillover effects on untreated utilities (i.e., the stable unit treatment value assumption
(SUTVA) holds). This might be a concern because utilities’ distribution lines are ultimately
all connected to the same grid. In our context, spillovers would likely attenuate the estimates
if anything, since declining losses in one region might also improve system performance (i.e.,
reduce losses) in neighboring regions.

Nonetheless, we explore the possibility of SUTVA violations in two ways. First, we
control for whether a neighboring utility deployed smart meters and find that the results do
not change (see Column 1 of Appendix Table C4).3” Second, we estimate the effects of AMI

on the amount of power received/imported from other utilities and exported/delivered to

37Since we do not observe the exact utility border locations in our data, we define utilities as neighbors if
they serve customers in the same county.
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other utilities. If the adoption of AMI in one utility’s service area negatively affects the grid
in others’ service areas, we might expect changes in exported and imported power. We find

no statistically significant effects on either (see Columns 2 and 3 of Appendix Table C4).

7 Mechanisms

We now shift to developing a better understanding of the channels through which utility
performance improves. We provide four sets of results that are consistent with utilities using
AMI to enhance different aspects of energy management, which in turn, can boost system
performance and service quality: improving consumption measurement and billing accuracy;
introducing new products, like dynamic pricing and demand response programs; investing in
complementary human and organizational capital, such as workers with “quant” skills; and

responding to power outages faster.

7.1 Improving Consumption Measurement and Billing Accuracy

One of the ways in which AMI can reduce losses and enhance performance is through im-
proved consumption measurement and billing accuracy. With analog technology, meter
readings and data entry are subject to human error. Digital meters are also more accurate.
Electromechanical meters degrade and slow down as they age, leading to electricity usage
readings that are lower than actual consumption (EPRI 2008). Replacing many old meters
could, therefore, lead to a substantial increase in sales. Although this means higher electric-
ity bills—a common customer complaint—customers also may value more accurate billing.
Utilities” also can invest recovered revenue to further improve infrastructure. Moreover,
having a more accurate picture of the system can help utilities reduce technical losses as
described in Section 3.4. Lastly, smart meters can also increase sales by enhancing utilities’
ability to identify electricity theft (e.g., meter tampering or illegal connections), which is a
significant source of NTLs in the U.S. (EPRI 2008; U.S. Department of Energy 2016a).
With these factors in mind, we explore whether AMI appears to reduce losses through
improved billing accuracy by examining electricity sales. Figure 3 illustrates that (logged)

sales per customer indeed start to increase immediately following AMI deployment, and the
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magnitude of the change continues to grow for about three years. The immediacy of the
effect is consistent with new meters increasing the accuracy of consumption measurement
and billing, including reducing electricity theft. The continued increase for a few years is

consistent with the utility requiring time to achieve full deployment.

7.2 Introducing New Products

Smart meters allow utilities to introduce or improve dynamic pricing and other demand
response programs, which can incentivize customers to shift demand away from peak periods
when the grid is constrained.®® As described in Section 3, even small reductions in demand
during these peak times can reduce technical losses. Offering such programs also can improve
customer satisfaction if they have flexibility in the timing of their consumption and value
the opportunity to lower their electricity bills.

To investigate whether such products play a role in improving performance, we first ex-
amine whether the likelihood that utilities offer them increases following AMI deployment.
We construct indicator variables equal to one when the number of customers using dynamic
pricing or demand response programs first becomes positive and zero otherwise as our de-
pendent variables. The results are presented in Columns 1 and 2 of Table 3. On average,
the likelihood of introducing these services indeed increases by 3.9% and 3.2% for dynamic
pricing and demand response programs, respectively.

Next, we explore whether consumers appear to have changed their electricity use behav-
ior with the introduction of such products, and if so, whether this contributes to the decline
in losses. We do not observe the timing of consumption to test this directly, unfortunately.
However, we examine whether the introduction of these products impacts total sales per
customer to test whether there are any changes in gross consumption. We interact the AMI
treatment with our indicator variables for whether the utility has started to offer dynamic
pricing or demand response programs and estimate the interaction effects on sales per cus-
tomer (Columns 3-4 of Table 3). We then do the same with loss rates as the dependent

variable to see whether the introduction of these programs enhances the effect of AMI on

38Some forms of such programs could be implemented without smart meters, such as seasonal pricing, but
more granular real-time information on electricity usage allows for intra-day load smoothing.
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losses (Columns 5-6 of Table 3).%

There are two key takeaways. First, both products offset the increases in sales per
customer that emerge following AMI deployment, suggesting some degree of consumer re-
sponsiveness. However, these offsets do not seem to account for the loss rate improvements,
suggesting that other factors drive loss reductions in our setting. This is not to say that
dynamic pricing and demand response programs—and the demand smoothing that can be
achieved either on the consumer or utility side—could never contribute to performance im-
provements, though. Consumers’ uptake of these products was still quite low during our
study period, so a more meaningful effect could potentially be achieved with broader use

and could be explored in future work.

7.3 Investing in Complementary Organizational Capital

If utilities use the AMI to directly transmit consumption data to their billing systems,
then we should observe a decrease in the number of meter readers employed by utilities.
Furthermore, fully realizing the benefits of AMI likely requires additional investments in
complementary organizational innovation and human capital, similar to the case of when

40 Integrating AMI technology

firms adopt information and communication technologies.
into existing processes and practices, and analyzing the data that it generates to improve
performance, requires advanced data analysis and software skills.

We do not observe the number or type of workers at the utility level to test this directly.
To explore workforce composition as a proxy for organizational change, though, we gather
annual metropolitan service area (MSA) by occupation data to examine whether there is
a reduction in local employment of utility meter readers and/or an increase in data and

software engineering-oriented workers.*!

We first provide graphical evidence on the relationship between the composition of

39Results from estimating each of these with OLS for comparison are provided in Appendix Table C5.

40The broader literature studying information technology adoption finds that successful implementation
and realization of the benefits requires complementary investments, and notably, organizational innovation
(Brynjolfsson and Hitt 2000; Caroli and Van Reenen 2001; Bresnahan et al. 2002; Brynjolfsson et al. 2021a).

41The MSA-level data does not specify industry, but as the meter reader occupation category covers only
the utilities sector (electricity, gas, and water), we can be fairly confident that changes in this occupation
category are strongly correlated with changes in electricity utilities specifically.
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workers in the local labor market and AMI adoption. In each panel of Figure 5, the horizontal
axes represent the proportion of customers that are AMI within an MSA. The vertical axes
are the residuals of the logarithm of employment after absorbing the MSA fixed effects,
population, and building units. We classify the occupations into three categories—meter
readers, quantitative and computation jobs, and others—and show the binned-scatter plot
for each of the category. Panels A and B of Figure 5 provide compelling evidence that AMI
deployment is associated with a decline in meter readers and an increase in quantitative and
computation jobs. In contrast, there is no clear pattern between AMI adoption and other
jobs (Panel C), which is reassuring.

To quantify the effects, we estimate the following triple-difference model:

Y;jt = 5AMI” X RelatedOCCj + Qjj + 51'75 + Eijt- (3)

The outcome variable is the logarithm of the number of employment in MSA ¢ for occu-
pation j in year t. AMI; is a binary indicator for whether any utility operating in MSA ¢
has deployed AMI in year ¢. RelatedOCC,; is a binary indicator for AMI-related occupation,
which is defined as either meter readers (denoted by “Billing”) or quantitative and computa-
tion jobs (denoted by “Quant”). We control for macroeconomic shocks, such as population
growth and regional economic policies, which may affect the number of workers differently
across locations with MSA-year fixed effects and for time-invariant differences in the labor
force across MSAs with MSA-occupation fixed effects. The coefficient of interest, 3, cap-
tures how the number of employment for meter readers or quantitative and computation
jobs within an MSA area is changing relative to other unrelated occupations.

Table 4 presents the estimation results. In Column 1, we find that the number of meter
readers decreases by 18.6% relative to other occupations. We also drop observations associ-
ated with quantitative and computation jobs in Column 2, because if there is a simultaneous
increase in these types of workers due to AMI adoption, they would make a poor control
group. We still find an 18.2% decrease in meter readers. We carry out the same exercise to
estimate the effect for quantitative and computation jobs, and indeed find that they increase

by 7.4% relative to other occupations, as shown in Column 3. When omitting meter readers
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from this estimation to address potential SUTVA violations, we again find a 6.8% increase
in quantitative and computation jobs.

We also limit the sample to include only MSAs that either deployed AMI between the
years 2008 and 2016 or do not deploy at all.*?> Panel A of Table C6 reports the estimates,
which are similar to those in Table 4. In Panel B, we further exclude the MSAs that
already deployed smart meters by 2008 and the estimated effects are similar. For quantitative
and computation jobs, the coefficient estimates are smaller and become less statistically
significant, but this is likely due to sample size limitations.

Taken together, these findings suggest that, on average, utilities invest in organiza-
tional innovation with the adoption of smart meters. This is consistent with management

innovation being an underlying driver of the service provision improvements.

7.4 Responding to Power Outages Faster

Finally, we explore whether utilities may use smart meters to improve reliability (i.e., power
outage duration and frequency). As discussed in Section 3.4, smart meters are often equipped
with last gasp alarms that automatically notify utilities when outages occur. Utilities must
actually respond accordingly, though, to restore power and for outage duration to decline.
We interpret such behavior as an improvement in energy management. Furthermore, utilities
also may be able to avoid some outages, such as those caused by equipment failure, if they
use AMI to identify bottlenecks and investment needs.

Using our feeder-line level for utilities in Texas, we estimate the effects of AMI deploy-

ment on reliability with the following model:

Yijit = exp(B1AML; + a; + v + 0'Xje) + €ije, (4)

where Yj;; denotes the reliability outcome for feeder line 7 of utility j in year ¢ and the
indicator AMI}; is utility-level AMI deployment treatment variable defined as before. We

include feeder line-level fixed effects (o) to control for time-invariant line-specific factors that

42In our utility-level analysis, we limit the sample of utilities with AMI to those that deployed between
2010 and 2016, but we do not impose such a restriction here because most (291 out of 434) MSAs have at
least one utility with AMI by then, so we would lose more than 80% of the sample.
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may impact reliability as well as year fixed effects (v;) to account for changing conditions
over time that are common across all feeder lines in Texas. The matrix X;; includes the
same controls as in our primary analyses as well as utility-year linear trends in some cases,
as having within-utility variation allows us to control for how utilities and their customers
may be changing differently over time. Due to the presence of zero values in the reliability
outcome, we estimate the model using Poisson quasi-maximum likelihood following Chen and
Roth (2024). To accommodate the 2SLS framework in this nonlinear setting, we implement
a control function approach.*?

The results are presented in Table 5. Outage duration (i.e., the number of minutes of
sustained interruptions experienced by a utility’s average customer) decreases by 6.8-7.8%
following AMI deployment (Columns 1 and 2)*. On the other hand, we find no effect
on outage frequency. This suggests that further action beyond improved monitoring and
identifying weak points may be important for avoiding outages, such as making additional
investments in the grid. Future work could explore this by examining whether investments

made post-AMI deployment help reduce outage frequency.

8 Implications of Utility Ownership

Our findings suggest that investing in AMI can provide efficiency and quality of service
benefits, and that energy management plays an important role. This raises the question of
what determines whether utilities have the incentives and capabilities to make longer-run
management and organizational investments to realize those benefits in the first place.

One potential factor could be utility ownership structure given the differences in in-
centives and constraints. In the U.S., electric utilities can be government-owned (i.e., op-
erated by municipalities, the state, or the federal government), investor-owned (IOUs), or
cooperatives (i.e., non-profits operated by their members). While all utilities face budgets,

regulations, and requirements to provide customers with reliable service, each ownership

43Specifically, we first estimate a first-stage regression of log(population) on the lead of AMI treatment
variable and other controls to obtain the residuals. These residuals are then included as an additional control
variable in the Poisson regression model to account for endogeneity. Standard errors are computed using
bootstrap procedures with clustering at the feeder line level.

44The percentage change is calculated by exp(f;) — 1.
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structure generates different incentives that could impact investment behavior and innova-
tive activities. Some of these differences mirror those documented for publicly-owned versus
privately-owned organizations in other sectors, such as healthcare.*’

For example, profit-maximization objectives may incentivize IOUs to invest in tech-
nologies that provide cost reductions, like AMI. However, given the pressure IOUs face from
shareholders to quickly generate returns on investment, they may be more focused on the
near-term cost reductions achieved just through replacing old analog meters (e.g., no need
for manual meter readings) as opposed to the more comprehensive organizational changes
required for achieving longer-term benefits, like reducing loss rates. On the other hand,
government-owned utilities (and cooperatives) may tolerate longer time horizons, which
may be required for investing in the complementary technologies and organizational cap-
ital required for fully realizing the benefits of digitalization. They also may prioritize social
objectives—Ilike quality of service—especially in the context of government-owned utilities

run by elected officials, given how their customers are their constituents.

8.1 Heterogeneity in Effects by Utility Ownership

We estimate the effects of smart meter deployment on loss rates by utility ownership and
find that the efficiency gains are primarily driven by government-owned utilities, and to a
lesser extent, cooperatives (see Figure 4).%% Loss rates decline substantially and quickly for
government-owned utilities following AMI deployment (Panel A), and they also decline for
cooperatives but the change is less pronounced (Panel B). In contrast, loss rates are flat
for IOUs following AMI deployment (Panel C), although AMI appears to at least negate an
otherwise upward sloping pre-trend.

While we cannot draw strong conclusions about the specific characteristics of different
ownership structures that may be driving this heterogeneity, the findings are consistent with
how government-owned utilities (and to a lesser extent, cooperatives) may have more of an

incentive to prioritize social benefits and the longer-run adjustments associated with AMI

45See Shleifer (1998) and Hart et al. (1997) for seminal examples.
46We include all utilities without AMI in the control group (despite ownership type) while the treatment
group in each case includes only utilities with each ownership type that have deployed AMI.
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that can contribute to higher quality of service relative to IOUs.

8.2 Ruling Out Alternative Explanations

We probe these results in a few ways to ensure that they are not driven by other observ-
able differences across utilities that may differ systematically by ownership type. First,
if government-owned utilities have higher loss rates prior to AMI deployment relative to
other utilities, pre-treatment performance may be at play. We find that this is not the
case, though. If anything, the average pre-treatment loss rate for treated utilities was lower
for government-owned utilities (0.045) relative to IOUs (0.051) and cooperatives (0.058) for
those in our sample (see Appendix Table C7).

Second, we explore whether utility size explains the heterogeneity, since IOUs are much
larger than government-owned utilities and cooperatives, on average, and the benefits of
AMI may scale with technology diffusion. It may take longer to fully deploy smart meters
for large utilities and thus it may take longer for IOUs to fully realize the benefits.?” We
estimate the effects for sub-samples of utilities that are more comparable in terms of size by
omitting IOUs that are larger than the largest non-IOU in our sample according to number
of customers. However, we still find that loss rates remain flat following AMI for these
“smaller” IOUs (see Appendix Figure D5).

Third, since IOUs do take longer to reach high diffusion rates relative to government-
owned utilities and cooperatives (see Appendix Figure D6), we also estimate the heteroge-
neous effects using our continuous treatment variable (measured as the number of AMI smart
meters over number of customers, as done in Panel B of Table 2). The results are presented
in Appendix Table C8. We still find no effect of AMI on loss rates for IOUs even once
reaching full adoption of AMI, whereas loss rates decline by 11.1% for government-owned
utilities and 3.4% for cooperatives.

Lastly, we explore whether electricity market deregulation explains the heterogeneity
across utility ownership. An extensive literature studies the benefits associated with elec-

tricity market deregulation. Although all ownership types can exist in both regulated and

47The average number of customers for IOUs is 599,187 compared to 17,885 for government-owned utilities
and 23,874 for cooperatives.
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deregulated markets, it could be that deregulation plays a role if one ownership type is more
heavily concentrated in deregulated or regulated states. We cannot formally test the impact
of deregulation in our setting since most changes occurred in the 1990s, however we probe
this by splitting the ownership sub-samples further based on whether the utility is located
in a state with or without any electricity market deregulation.?® If loss rates only decline for
government-owned utilities in deregulated markets—or if loss rates decline for all three own-
ership types in either regulated or deregulated states—perhaps regulation vs. deregulation
is an underlying driver.

We find that this is not the case (see Appendix Figure D7). Loss rates are flat for
utilities in deregulated states for all ownership types (Panels B, D, and F), whereas they
decline for government-owned utilities in states with regulated electricity markets (and for
cooperatives to a lesser extent) (Panels A and C). Notably, we still find no decline in loss
rates for IOUs in regulated states (Panel E). This preserved heterogeneity across ownership
within regulated states suggests that ownership plays a role, and we remain cautious in

drawing strong conclusions about deregulation based on this heterogeneity analysis.

9 Financial Performance, Pricing, and Payback Period

9.1 Revenue and Pricing

Reductions in losses can bolster utilities’ financial performance in various ways. Although we
cannot examine all potential benefits with our data—for example, we do not have information
on operational and labor costs that may decline if utilities shift away from manual meter
readings—we can examine the implications of AMI for revenue and pricing. Reductions in
losses imply enhanced revenue recovery, so we expect to see an increase in total revenue, all
else equal. The effects on pricing could go in either direction, as utilities may pass through
the benefits to consumers in the form of lower prices, or they may increase prices to recover
costs associated with AMI investments.

Table 6 provides the estimated effects on total revenue (Columns 1-2) and average prices

48T ists of states included in each sub-set can be provided upon request.
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(Columns 3-4), which we construct as total revenue divided by total sales. When estimating
the effects for the full sample, we find that total revenue increases by about 0.9% in the
post-deployment period on average (Column 1, Panel A) and by about 1.7% after three
years (Column 1, Panel B). Relative to the pre-treatment mean total revenue for utilities
that deploy AMI ($139.3 million), these translate into revenue increases of $1.25 million per
year on average and $2.37 million per year after three years. Once omitting utilities that
were already high performers before deploying AMI, we find that revenue increases by 1.4%
on average (Column 2, Panel A) and 2.2% after three years (Column 2, Panel B). Relative
to the pre-treatment mean revenue for these utilities ($141.6 million), these figures translate
into revenue gains of $1.98 million on average and $3.12 million after three years.

If utilities pass-through the benefits of AMI to consumers, we would expect to find a
decrease in average prices. On the other hand, they might pass-through the investment
costs by increasing prices. We estimate the effects on average prices to better understand
the financial implications for consumers and find no effect, on average (Columns 3 and 4).
However, given the differences in loss rate reductions across ownership type that we found
in Section 8, these results may mask important heterogeneity. Moreover, it may take time
for utilities to reduce prices due to rate of return regulation.

With this in mind, we explore the dynamic effects on average prices by ownership
type in Appendix Figure D8. Indeed, average prices decline following AMI deployment for
government-owned utilities (Panel A). The reduction is small at first but becomes much
more pronounced after about 3-5 years. For cooperatives, average prices remain flat until
about 5 years post-AMI, when they then start to decline (Panel B). On the other hand, for
IOUs, average prices do not decline at all following AMI deployment (Panel C), although

the otherwise upward sloping pre-trend in average prices appears to flatten.

9.2 Back-of-the-Envelope Payback Period

To put these revenue estimates into context relative to the cost of smart meter investments,
we conduct a simple cost-benefit analysis to calculate the payback period of AMI deployment.
Table C9 summarizes the key components of this analysis. Panel A presents the estimated

annual revenue gains from AMI adoption, as discussed earlier. Panel B reports the cost
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calculation. We assume a total installation cost of $200 per smart meter, inclusive of both
hardware and labor. This figure is based on Greenough (2015)” estimates in 2015 and include
both hardware and labor. We view $200 as a conservative figure relative to the costs utilities
are likely to face today, given continued declines in hardware prices.*® Utilities adopting AMI
had 62,273 customers on average in pre-treatment years in the full sample and 66,515 when
omitting initially high performers. Full deployment for the average utility would therefore
cost approximately $12.45 million and $13.30 million, respectively.

Assuming all smart meters are installed upfront and that the revenue gains accrue as
fixed annual cash flows received at the end of each year, the resulting payback periods range
from 5 to 18 years depending on the discount rate and the revenue gain estimate (Panel C).
Once considering the revenue gain estimate from when omitting the first two years post-
deployment, the resulting payback periods range from 5 to 7 years.

While this payback period analysis provides a useful benchmark for assessing the fi-
nancial viability of AMI deployment based on observable revenue gains, it captures only
a subset of the potential benefits. Other important advantages—such as operational sav-
ings, improved outage response, and environmental gains through enhanced demand man-
agement—remain unmeasured in our data. These omitted benefits can be substantial. For
example, the U.S. Department of Energy estimates that AMI deployment led to $316 million
in labor and related cost savings across 19 utilities over a three-year period (U.S. Department
of Energy 2016b). Future work leveraging more granular utility operations data could offer

a more comprehensive welfare evaluation of AMI investments.

10 Conclusion

Digitalization is often found to enhance various aspects of firm performance, such as reducing
costs and enhancing productivity. However, whether this applies to the public services con-

text has been unclear to date. Results from existing work studying private sector firms may

49Cost estimates in 2015 were $200 (Greenough 2015), and hardware costs have declined since then.
However, recent increases in labor costs may offset some of these reductions. This $200 per-meter cost falls
within the range of $130 to $600 reported by the U.S. Department of Energy for deployments during the
2009-2015 period (U.S. Department of Energy 2016b).
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not transfer given how organizations providing public services often operate under different
market conditions and face different incentives and constraints. Studying digitalization in
the public services context can be difficult due to relatively low uptake in many industries,
though, and understanding how to improve public services more generally can be difficult
due to challenges with measuring quality of service.

We overcome these challenges by examining the impact of digitalization on utility per-
formance and quality of service in the U.S. electricity sector, which provides a unique setting
in which adoption of digital technologies is now widespread and objective performance and
service quality measures are reported consistently. We found that, on average, the electricity
loss rate decreased by 3.8%. The effects are much larger for utilities with high pre-treatment
losses and once at least three years have passed since initial deployment. Findings from
additional analyses suggest that various aspects of energy management—such as improved
billing accuracy and enhanced system monitoring—are likely at play.

The impacts of AMI on electricity reliability are mixed but consistent with anecdotes
from utilities when reporting on the benefits incurred from AMI during the time period that
we study. Power outage duration decreased, signalling that utilities use the information from
AMI to identify and respond to interruptions more quickly. The frequency of outages does
not change, though.

The findings in this paper are important and timely for policy. Electricity infrastructure
in the U.S. and many other countries is aging, making the grid increasing susceptible to
disruption. At the same time, extreme weather events are occurring with increasing frequency
due to climate change and utilities are facing new energy management challenges with the
integration of intermittent renewable electricity as well as expected load growth that is
on the horizon. Governments globally are allocating large amounts of public expenditures
to modernizing infrastructure in hopes of adapting and preparing for this transition, but
research on whether these investments deliver on their promise is scant. Taken together,
our findings suggest that digitalization can be a tool for improving electricity service quality
and utility performance, but the magnitude of the benefits may hinge upon investing in

complementary organizational capital.
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Table 1: Summary Statistics of Key Variables (Main Estimation Sample)

Full AMI Adopters Non-Adopters Difference
Sample Pre-Adoption Years All Years in Means
(1) 2) (3) (4)
Loss Rate (%) 0.052 0.052 0.054 0.002
(0.026) (0.024) (0.028) (0.001)
Total Losses (000s MWh) 65.77 83.00 37.73 -45.27
(275.46) (340.86) (132.40) (4.68)
Total Sales (000s MWh) 1160 1430 686 -744.2
(4284) (5093) (2522) (73.9)
Total Revenue (million) 119.5 139.3 68.1 -71.2
(498.2) (569.0) (240.4) (7.94)
Number of Customers (000s)  57.01 62.27 33.70 -28.58
(258.05) (271.13) (127.50) (3.88)
Sales per Customer (MWh) 31.00 27.01 36.39 9.38
(140.51) (17.15) (206.42) (3.18)
Rev. per Customer (000s) 2.88 2.43 3.33 0.896
(11.94) (1.12) (17.57) (0.270)
Average Prices ($/kWh) 0.102 0.097 0.102 0.005
(0.034) (0.028) (0.039) (0.001)
Observations 14,252 4,239 6,546 10,785
Number of Utilities 1,304 704 600 1,304

Notes: Table provides summary statistics of key variables used in the utility-level analysis. Column 1 in-
cludes the full estimation sample, Column 2 includes only pre-treatment years for utilities that deploy AMI
between 2010 and 2016, and Column 3 includes all years for utilities that do not deploy AMI through our
sample period. The differences of the means are in Column 4. Standard errors are in parentheses. Data are

from the Energy Information Administration for the years 2007 through 2017.
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Table 2: Effect of Smart Meter Deployment on Electricity Loss Rate

Dependent Variable: Loss Rate Loss Rate Loss Rate Loss Rate

(1) (2) (3) (4)

Panel A: Main Results (Binary Treatment)

Post AMI -0.002%* -0.003** -0.003** -0.004**
(0.001) (0.001) (0.001) (0.002)
Observations 14,252 10,769 12,266 9,268
Estimate as % Change 3.8% 5.0% 5.8% 6.7%
Mean Pre-Treat DV 0.052 0.060 0.052 0.060

Panel B: Continuous Treatment

Prop. AMI -0.003*** -0.003*** -0.003*** -0.004%**
(0.001) (0.001) (0.001) (0.001)
Observations 14,252 10,769 12,266 9,268
Estimate as % Change 5.8% 5.0% 5.8% 6.7%
Mean Pre-Treat DV 0.052 0.060 0.052 0.060
Sample Restrictions:
Omit Initially High Performers X X
Include 3+ Years Post-Adoption Only X X
Utility FEs X X X X
State-Year FEs X X X X
Local Market Controls X X X X

Notes: Table presents our main results for the change in loss rate following smart meter roll-outs. Panel A
uses our primary (binary) treatment variable to estimate the effect, and in Panel B, we replace this with
a continuous treatment variable measured as the proportion of a utility’s customers that have AMI. In all
regressions, we estimate the model of Equation 2 following our 2SLS approach, using a one-year lead of the
binary AMI treatment variable as the excluded instrument for log(population) and the year prior to initial
AMI adoption (“-1”) as the omitted year. Local market controls include population and new building con-
struction within counties that the utility serves. Coefficients on the instrumental variable in the first stages
are between 0.007 and 0.014 and statistically significant at least at the 10% level in each case. Mean values
of dependent variable are calculated using pre-treatment observations for AMI adopters. Standard errors
are clustered at the utility level. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table 3: Provision of Complementary Products

Dependent Variable:

Sales/
Cust.

3)

Sales/
Cust.

(4)

Loss
Rate

(5)

Loss
Rate

(6)

PostAMI 0.020**  0.020*%**  -0.002** -0.002*
(0.009) (0.007) (0.001) (0.001)
PostAMI x DP -0.034* 0.001
(0.017) (0.001)
DP 0.013 -0.001
(0.016) (0.002)
PostAMI x DR -0.053*** -0.000
(0.019) (0.001)
DR 0.024* -0.001
(0.013) (0.001)
Observations 14,252 14,252 14,252 14,252
Mean Pre-Treat DV 3.18 3.18 0.052 0.052
Utility FEs X X X X
State-Year FEs b'e X X b'e
Local Mkt. Controls X b'e X b'e

Notes: Table presents results related to products that could enhance the benefits of AMI (dy-
namic pricing and demand response programs). In Columns 1-2; dependent variables are indi-
cators for whether utilities offer dynamic pricing or demand response programs, respectively. In
Columns 3-4, the dependent variable is (logged) sales per customer, and in Columns 5-6, it is the
loss rate. In all regressions, we estimate the model of Equation 2 following our 2SLS approach, us-
ing a one-year lead of the AMI treatment variable as the excluded instrument for log(population)
and the year prior to initial AMI adoption (“-1”) as the omitted year. Mean values of dependent
variable are calculated using pre-treatment observations for AMI adopters. Standard errors are
clustered at the utility level. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table 4: Investing in Complementary Organizational Capital

Dep. Var. (log): Number of Employees

(1) (2) (3) (4)
PostAMI x Meter Readers — -0.186*** -0.182%*

(0.041) (0.041)
PostAMI x Quant Workers 0.074*** 0.068***
(0.019) (0.019)

Observations 100,340 95,642 100,340 97,500
MSA-Occupation FEs X X X X
MSA-Year FEs X X X X
Drop Quant Workers b
Drop Meter Readers X

Notes: Table provides results from estimating effects of AMI on the number of employees in
meter reader (Columns 1-2) and quantitative data analysis-oriented (Columns 3-4) occupations.
Dependent variable is log(employment) and data are at the MSA-occupation-year level. Stan-
dard errors are clustered by MSA. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table 5: Impact of Smart Meters on Power Outages in Texas

Dependent Variable: Outage Duration (SAIDI) Outage Frequency (SAIFT)
(1) (2) (3) (4)

PostAMI -0.071%** -0.082*** -0.002 -0.024
(0.026) (0.029) (0.021) (0.023)
Observations 61,154 61,154 61,148 61,148
Mean Pre-Treat DV 93.27 93.27 0.966 0.966
Feeder FEs X X b'e X
Year FEs X X b'e b'e
Local Market Controls X X X X
Utility-Year Trends X X

Notes: This table reports the effects of AMI deployment on electricity reliability in Texas, us-
ing within-utility feeder line-level data and a Poisson model. We implement a control function
approach to accommodate the 2SLS framework within the Poisson estimation. The dependent
variable is SAIDI (power outage duration in minutes) in Columns 1-2 and SAIFI (outage fre-
quency) in Columns 3-4. Additional local market controls include new building construction
and log population. The lead AMI treatment variable serves as the excluded instrument for
log(population) in the first stage. The original sample consists of 61,234 observations. The
estimation drops 80 observations for SAIDI and 86 for SAIFI due to singleton units or separa-
tion by fixed effects. Standard errors are estimated using bootstrap procedures clustered at the
feeder line level. Asterisks denote statistical significance: *p <0.10, **p <0.05, ***p <0.01.

53



Table 6: Financial Implications - Changes in Revenue and Prices Across All Utilities

Dep. Var. (log): Total Revenue Average Prices

(1) (2) 3) (4)

Panel A: Full Sample

PostAMI 0.009* 0.014** -0.003 -0.003
(0.005) (0.006) (0.004) (0.005)
Observations 14,252 10,769 14,252 10,769

Panel B: 34 Years Post-Adoption

Post AMI 0.017* 0.022* -0.006 -0.005
(0.010) (0.012) (0.007) (0.009)
Observations 12,266 9,268 12,266 9,268
Mean Pre-Treat DV (Levels) $139.3M $141.6M  $0.097/kWh $0.102/kWh
Omit Initially High Performers X X
Utility FEs X X b b
State-Year FEs X X X X
Local Market Controls X X X X

Notes: Table presents estimates of the effects of smart meter roll-outs on (logged) total revenue
(Columns 1-2) and average prices (Columns 3-4). In all regressions, we estimate the model of Equa-
tion 2 following our 2SLS approach, using a one-year lead of the AMI treatment variable as the ex-
cluded instrument for log(population) and the year prior to initial AMI adoption (“-1”) as the omitted
year. The full sample is used in Panel A, and in Panel B, we omit the initial year of deployment and
the two years that follow. Local market controls include population and new building construction
within counties that the utility serves. Mean values of dependent variable are calculated using pre-
treatment observations for AMI adopters. Standard errors are clustered at the utility level. Asterisks
denote *p <0.10, **p <0.05, ***p <0.01.
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Figure 1: AMI Meter Adoption in 2007 versus 2017
Notes: Maps show the proportion of customers with AMI by county in 2007 (Panel A) and 2017 (Panel B),

illustrating how AMI smart meter deployment increased dramatically through this time period. Created by
authors using data from the Energy Information Administration (Form EIA-861)

56



.015
|

.01
1

.005
1
o

-01 -.005
|

1

Loss Rate (Total Losses / Disposition)
0
1
)
)

-.015

8 -7 6 5 4 3 -2 -1 0 1 2 3 4 5 6+
Years relative to initial AMI roll-out
Pretrends p-value = 0.52

Figure 2: Effect of Smart Meter Deployment on Electricity Loss Rate

Notes: Figure illustrates main results for the effect of AMI deployment on electricity loss rates. Plot provides
coefficients 8; and their 95 percent confidence intervals from estimating Equation 1 with our 2SLS estimator,
using a one year lead of the AMI treatment variable as the excluded instrument for log(population) and
omitting the year prior to initial AMI adoption (“-1”). Utility and state-year fixed effects as well as local
market controls are included. Standard errors are clustered at the utility level.
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Figure 3: Effect of Smart Meter Deployment on Sales per Customer

Notes: Figure illustrates effect of AMI deployment on (logged) sales per customer. Plot provides coefficients
B; and their 95 percent confidence intervals from estimating Equation 1 with our 2SLS estimator, using a
one year lead of the AMI treatment variable as the excluded instrument for log(population) and omitting
the year prior to initial AMI adoption (“-1”). Utility and state-year fixed effects as well as local market

controls are included. Standard errors are clustered at the utility level.
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Figure 4: Heterogeneity in Smart Meter Effects on Loss Rates by Utility Ownership

Notes: Figure illustrates heterogeneous effects of AMI deployment on loss rates by utility ownership. Plots
provide coefficients and their 95 percent confidence intervals from estimating Equation 1 separately for
government-owned utilities (Panel A), investor-owned utilities (Panel B), and cooperatives (Panel C) using
our 2SLS estimator approach and omitting the year prior to initial AMI adoption (“-1”). Utility fixed effects,

state-year fixed effects, and local market controls are included. Standard errors are clustered by utility.
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Figure 5: Meter Readers, Quant-Related Jobs, and Other Occupations as AMI
Deployment Increases

Notes: Figure plots relationship between the proportion of customers with AMI meters and number of
employees in the utility sector that are meter readers (Panel A), quantitative and computation workers
(Panel B), and other occupations (Panel C). Labor data are at the MSA-occupation level and are aggregated
into bins. The outcome variable on the vertical axis is the residual of log(employment) after controlling for

MSA fixed effects and local market characteristics (population and new building units).
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A Additional Background on AMI in the U.S.

A1 Drivers of AMI Adoption in the United States

Digitization of the electricity grid initially progressed slowly in the U.S. Some of the main
factors affecting initial roll-out included financial barriers, differential state support for AMI,
a lack of regulatory standards, and utility learning about the technology (Guo, Bond and
Narayanan 2015; Strong 2018). In the paragraphs that follow, we discuss how alleviating
constraints related to each of these factors likely helped to deliver AMI adoption in the
United States.

Alleviating financial constraints: Since the mid-2000s, utility AMI investments
have increased, which is at least partially attributable to government efforts. At the federal
level, government efforts started with the Energy Policy Act of 2005, which provided a policy
framework for AMI. The Energy Independence and Security Act of 2007 was then enacted “to
support the modernization of the Nation’s electricity transmission and distribution system,
to maintain a reliable and secure electricity infrastructure that can meet the future demand
growth” (Public Utility Commission of Texas 2010). This act tasked the U.S. Department
of Energy with detecting barriers to smart grid technology adoption, while also deploying
funding and encouraging states to permit utilities to recover the costs of investing in AMI.

Adoption substantially increased with the introduction of federal funding for AMI, al-
leviating financial barriers. The American Recovery and Reinvestment Act of 2009 directed
substantial amounts of federal funding towards AMI (U.S. Department of Energy 2012b). As
of 2012, $3.4 billion had been invested in federal funds through the Smart Grid Investment
Grant (SGIG) program. Given private sector matching funds were required, the program
increased investment in AMI by nearly $8 billion as of 2012 (U.S. Department of Energy
2012b). The SGIG program, which funded a total of 99 projects across the country (U.S.
Department of Energy 2012a), was intended to accelerate the installation of smart grid tech-
nologies in four areas with investments in AMI being one of the four. The program did
induce greater adoption of AMI and the number of smart meters installed increased fourfold
between 2007 and 2011 (Gold et al. 2020). As we show in Appendix Figure D1, Panel A,
installations by utilities have increased steadily since 2007.

The cost of smart meters in the market have also declined over time, which also is
another channel through which the financial constraints of AMI adoption were alleviated
over time (Strong 2018; Guo et al. 2015).

Increasing state support: There is considerable heterogeneity in AMI adoption rates
across states. These differences are likely correlated with variation in the extent to which rele-
vant studies, policies, and legislation were carried out in the states (EIA 2012). Strong (2018)
finds state support for AMI adoption is positively correlated with adoption, but this rela-
tionship is not always statistically significant. In some states—although not all—regulatory
approval is required to approve utilities’ plans for AMI cost recovery (EIA 2017). The U.S.
Energy Information Administration (EIA) tracked smart grid legislative regulatory policies
by state through at least 2011 (see, e.g., EIA 2011).

Developing regulatory standards: Some utilities have indicated that they waited
for certain industry technology standards to be developed and finalized before investing in
AMI. One main example of this is the development of an interoperability standard, which
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was finalized in 2012 (Strong 2018).

Learning about the technology: Evidence also suggests at least two forms of learn-
ing—learning by doing and learning from others—played a role in the steady increase of
AMI deployment (Strong 2018). Such learning would affect both the deployment of AMI
by the utility over time as well as the benefits the utility (and potentially the customers as
well) derive from the installation of AMI.

A2 Expected Benefits of AMI Deployment

Government and industry reports cite a number of benefits from deploying AMI that accrue
to the utilities and customers. Many of the expected benefits are linked to the two-way
transmission of data permitted by AMI, which is claimed to help improve utility operational
efficiency in multiple respects.

AMTI’s remote transmission of electricity consumption data can reduce the reliance on
employees to manually read meters. This can remove the need to estimate or interpolate bills
when meter reading is not possible and decrease overall human error in the billing process
(Nangia et al. 2016; Cooper and Shuster 2021). Customer complaints decrease and billing
disputes resolve more quickly (U.S. Department of Energy 2016).

Utilities can use the real-time information to improve billing processes and efficiency,
enhance forecasting capabilities, balance supply and demand more precisely, decrease outage
response times, identify bottlenecks or other potential threats to the grid, improve safety, and
improve overall grid operations including within the transmission and distribution systems
(Nangia et al. 2016; Gold et al. 2020; Public Utility Commission of Texas 2010).

In terms of improving reliability, AMI meters can help in several ways. First, they assist
in identifying outages faster and expediting service restoration. For example, smart meters
are often enabled with a “last gasp” alarm, which informs the utility at the time when an
outage occurs and then again when power is restored (U.S. Department of Energy 2014). Of
the 99 projects funded through the SGIG program, 48 projects had the explicit goal of im-
proving electric distribution reliability (U.S. Department of Energy 2012a).”° Second, smart
meters allow utilities to remotely disconnect customers—such as those who agree to allow
utilities to do so when needed by enrolling in demand response programs—at times when
either wholesale electricity prices are particularly high or the electrical system is stressed
(Public Utility Commission of Texas 2010), which can help avoid outages and distribution
system damages altogether.

Some, although not all, of these operational efficiencies—such as the faster, remote
identification of outage locations—also benefit utility customers. For example, EIA docu-
mentation notes that AMI “can support demand response and distributed generation, ...
[and] provide information that consumers can use to save money by managing their use of
electricity” (EIA 2017). Others note the role of AMI and the additional functionalities that
AMI can enable—which can help utility customers realize the many of the benefits of AMI

50 According to the DOE, these 48 projects had one or more of the following goals: ”(1) reducing the
frequency of both momentary and sustained outages, (2) reducing the duration of outages, and (3) reducing

the operations and maintenance costs associated with outage management” (U.S. Department of Energy
2012a).
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(e.g., lower costs and improving understanding of prices and billing)—have by and large been
underutilized by many utilities (Gold et al. 2020).

A3 Valuing the Returns to AMI Deployment

The benefits of AMI vary across utilities depending on a number of factors, such as the
utilities’ baseline infrastructure, the functions of the AMI employed, the characteristics of
the territory served (such as how remote it is), and the complementary investments utilities
make.

Early on, federal and state agencies underscored the need to methodologically enumer-
ate and estimate the benefits and costs of AMI deployment projects. Considerable effort
has been invested in developing methodological approaches to defining, categorizing, and
estimating both benefits and costs from the ratepayers perspective (see, e.g., Electric Power
Research Institute 2010 2012). In some states, electricity utilities provided testimony to their
state public utilities commissions to provide assurance that the benefits of these project out-
weigh the costs (for early examples see, e.g., Southern California Edison 2006; Public Utility
Commission of Texas 2010). To understand the expectations of AMI’s benefits to individual
utilities would therefore require examining, on a case-by-case base, the utility testimonies to
their state public utility commissions, where they are available.

Ex ante studies on the adoption of smart grids (and associated dynamic pricing policies)
find benefit-cost ratios greater than 1, however some have indicated that not all of the benefits
included in those calculations actually came to fruition (Guo et al. 2015). This could be the
result of utilities not employing all the potential functions permitted by the AMI.

The magnitude of AMI benefits relative to the costs depends on the specific utility’s
needs and use of the technology. There are some states and smaller jurisdictions that have
not approved their utility’s proposal to install AMI, with the common opposition to AMI
being the magnitude of their costs relative to their expected benefits (or uncertainty in those
expected benefits) (Gold et al. 2020). In contrast, however, documentation on the SGIG
program reports large O&M cost savings for some AMI projects, including one project that
saved $174 million alone (U.S. Department of Energy 2016).
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B Data and Sample Construction

B1 Utility-Level Data

We assemble utility-level information on basic characteristics, operations, sales, and meter
adoption for the period 2007-2018 from the Energy Information Administration (EIA) forms
and S&P Global. We restrict our sample to the contiguous U.S. (not including Alaska,
Hawaii, or other offshore territories).

Basic Characteristics. We use S&P Global, EIA Forms 860 and 861 to construct
detailed data on utility-level basic characteristics, including location, county-level service
territory, ISO, FERC region, regulation status, ownership type (i.e., cooperative, investor-
owned, government agencies, etc.), and electric activities (i.e., generation, transmission, and
distribution).

Advanced Metering. Advanced metering information is derived from Schedule 6
of EIA-861. Since 2007, the data reports the number of electric meters by state, customer
category, and meter type, including automated meter reading (AMR) and advanced metering
infrastructure (AMI). In addition to smart meter adoption, these data also include the
number of customers with the following advanced technology features enabled by the AMI
since 2013: (1) digital access to daily energy usage; (2) home area network (HAN) gateway
that allows the meter to communicate with customer’s devices; (3) direct load control (LC)
that permits remote shutdown or cycle a customer’s electrical equipment on short notice.
We aggregate the data to the utility level and calculate the total number of AMR and AMI
per utility in each year. For any missing values in the number of AMI for certain years, we
impute them using the value from the nearest available year prior to the missing year.

Operations. Operational data comes from EIA-861. We collect utility-level total elec-
tricity losses, which measure the amount of electricity lost from transmission and distribu-
tion. We drop the records with negative loss values as these are likely mistakes in EIA’s data
collection and reporting process. We then calculate the electricity loss rate as the share of
total electricity losses relative to total electricity disposition. EIA-861 also reports detailed
sales and revenue information, which is decomposed into different parts, including retail sales
to ultimate customers (i.e., electricity sold to customers purchasing electricity for their own
use and not for resale), sales for resale (i.e., electricity sold for resale purposes), delivery
customers (i.e., unbundled customers who purchase electricity from a supplier other than
the electric utility that distributes power to their premises), transmission of electricity, and
other electric activities. For the retail sales to ultimate customers, EIA-861 has information
on sales, revenues, and customer counts by four customer categories, including residential,
commercial, industrial, and transportation.

Dynamic Pricing and Demand Response. EIA-861 contains the number of cus-
tomers enrolled in demand response programs (e.g., energy savings or actual peak savings)
or dynamic pricing programs (e.g., time-of-use pricing or real-time pricing) by utility, state,
customer category, and balancing authority. The information on aggregate customer counts
for all demand response or dynamic pricing programs is available after 2007, but Specific
customer count on a single program is only available after 2013. We therefore calculate
the total number of customers enrolled in any demand response programs or any dynamic
pricing programs for each utility in a year. For any missing values in the number of enrolled
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customers, we impute them using the value from the nearest available year prior to the
missing year. There are also data entry errors in the raw data where the number of enrolled
customers is reported to be zero but the values in adjacent years are positive. For these
cases, we replace the zeros with the non-zero values from the previous year.

Population and Building Construction. We supplement the utility data with mea-
sures on local population and building construction. The population data comes from the
Survey of Epidemiology and End Results (SEER). It has annual population size for each
county by age, race, and sex since 1969. For each year, we create two population measures
based on this data: total population in a county and the size of the population older than 18.
The second measure aims to capture the number of adults but excludes infants or teenagers
who are unlikely to be homeowners. Data on new building units comes from the Building
Permits Survey (BPS) administrated by the U.S. census. It provides annual statistics on the
number and valuation of new privately owned residential housing units authorized by build-
ing permits for each county. From this data, we calculate the new and cumulative building
units for the period 2007-2018. We merge these county-level population and housing data
with electric utility data through their service territory information. Specifically, we sum up
all the population or housing measures for the counties that a utility serves.

Sample Construction. We merge the utility-level annual data sets based on EIA-
assigned unique utility ID and year. The combined data set at this stage contains 27,009
observations of 2,657 electric utilities. We implement a few additional cleaning steps. First,
we exclude utilities that do not operate in the distribution segment of electricity delivery
(23,750 observations of 2,089 utilities left). Second, we omit observations that likely represent
data entry errors, such as negative losses or customer counts (21,368 observations of 1,917
utilities left). Third, for each utility, we calculate the ratio of year-specific disposition of
electricity to its mean disposition and then drop the observations with such ratio larger than
2 (21,352 observations of 1,917 utilities left). These observations exhibit a sudden jump in
total disposition of electricity and could be mistakes in data reporting. Fourth, we restrict
to utilities that have at least 11 years of non-missing electricity losses data to maintain a
high degree of panel balance (19,897 observations of 1,669 utilities left). Finally, we omit
utilities that adopted AMI prior to 2010 and after 2016 such that the sample includes all
utilities that never adopt and those that do adopt between 2010 and 2016. This allows us
to include at least three years of pre-treatment data and one year of post-treatment data
for all adopters. We also exclude extreme outliers with respect to loss rates and number of
customers. We omit utilities with average pre-treatment loss rates in the top 1% or bottom
1% of the distribution of utilities” average loss rates when they have not adopted AMI as well
as utilities with fewer than 20 customers. The final data set used throughout our primary
analyses contains 14,252 observations of 1,304 utilities.

B2 Feeder-Level Reliability in Texas

Feeder line data on service quality comes from the Public Utility Commission of Texas
(PUCT), a state agency regulating electric, water, and telecommunication utilities. Each
year, PUCT requires electric utilities to submit an annual service quality report in accordance
with Substantive Rule §25.81. These reports contain detailed information on service quality
and the total number of customers for each feeder line.
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We focus on two international standards for measuring service reliability within an elec-
tricity distribution system: the System Average Interruption Duration Index (SAIDI) and
System Average Interruption Frequency Index (SAIFI). These measures provide standard-
ized methods of electricity service reliability such that services are comparable across utilities
and over time.”! Both of these address interruptions, which are defined as losses of power
delivery to one or more customer. According to the IEEE Guide for Electric Power Distri-
bution Reliability Indices, SAIFT is a measure as to how often the utility’s average customer
experienced a sustained interruption in service (more than 5 minutes) within a given year.
SAIDI measures the number of minutes of sustained interruptions that the utility’s average
customer experiences, with interruption duration being the length of time between the start
of service being interrupted and the time when service delivery is restored.

In the PUCT reports, both SAIDI and SAIFT are calculated by taking the mean of outage
duration and frequency over all customers served by a feeder line in a year. Specifically, for
feeder line 7 in year t,

Zcei XCit

= =5

(B1)
In the above equation, X is the number (for SAIFI) or duration (for SAIDI) of outage events
experienced by customer ¢ served by feeder line ¢ in year t, and N;; is the total number of
customers. A lower SAIDI or SAIFI value means a higher level of service reliability.

Sample Construction. The raw feeder line data contains 104,610 observations of
11,470 feeder lines from 12 utilities during 2007-2020. We implement a few additional pro-
cessing steps to construct the final data. First, we restrict the sample to 2007 — 2016. After
2016, there are mergers and acquisitions among these utilities, since which the identifiers of
feeder lines owned by those utilities have completely changed. Consequently, we are not able
to match those feeder lines with the pre-2016 data. We also exclude two utilities —Cap Rock
and Sharyland —that experienced mergers or acquisitions before 2016. Second, we restrict
to feeder lines that have at least 6 years of non-missing reliability data. Then, we match
this feeder-line-level data with utility-level AMI deployment based on EIA-assigned utility
ID and name. The final data set contains 68,529 observations of 7,294 feeder lines from 10
utilities in Texas.

B3 Regional Employment Data

We assemble a dataset on occupation-level employment in each Metropolitan (MSA) and
nonmetropolitan (non-MSA) area using the information from the Occupational Employment
and Wage Statistics (OEWS) provided by the U.S. Bureau of Labor Statistics (BLS). It
provides annual information on the number of total employment for each occupation category
in each area, dating back to 1997. This area-level data, however, does not provide industry
decomposition, and hence the employment represents all industries in an area. We retrieve
the area-level employment data for the 2007-2018 period and restrict to the contiguous U.S.

51The measures are limited to an extent, as they capture interruptions but not other power quality mea-
sures, such as drops and surges in voltage.
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We define an occupation as bill-collection-related labor if it belongs to the following
category (with the corresponding occupation code in parenthesis): Meter Readers, Utili-
ties (43-5041). We then drop other occupations in the same 2-digit category as those bill-
collection-related ones (i.e., 43 - Office and Administrative Support Occupations). This is
to mitigate the concern on spillover effects or occupation substitutions between those bill
collection jobs and other office- or administration-related jobs. Then, the six-digit-level oc-
cupation data is aggregated to the two-digit level. We define jobs related to quantitative
and computation if they belong to the following 2-digit occupation category: Computer and
Mathematical Occupations (15-0000).

Sample Construction. To match this area-level employment data with AMI infor-
mation, we first create county-level AMI adoption by aggregating the utility-level advanced
metering data based on each utility’s service territory. Specifically, for each county and year,
we sum up the number of AMI meters over all the utilities serving that county. Then, we
aggregate the county-level data to the area-level using the MSA and non-MSA area defini-
tions provided by BLS.?? For the counties that are matched with more than one area, we
evenly divide the number of AMI meters in those counties before doing the aggregation. The
combined data set contains 140,760 observations of 22 two-digit occupation categories in 642
MSA or non-MSA areas. We made two additional steps for the data cleaning. First, we
omit the observations with a positive average wage but zero number of employment, which
are likely to be data reporting errors. Second, we exclude areas that never had any bill-
collection-related labor throughout the sample period. The final data set contains 100,848
observations of 22 two-digit occupation categories in 434 areas.

52BLS provides a mapping between each county and the corresponding MSA or non-MSA area. The data
is available here: https://www.bls.gov/oes/2020/may/msa_def .htm.
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C Additional Tables

Table C1: Falsification Test - No Effect on Loss Rate for Utilities with
Initially Low Loss Rates in Pre-Treatment Period

Dependent Variable: Loss Rate Loss Rate

(1) (2)

Post AMI 0.001 -0.000
(0.002) (0.005)
Observations 3,417 2,907
Mean Pre-Treat Dep. Var. 0.029 0.029
Utility FEs X X
State-Year FEs X X
Local Market Controls X X

Notes: Table presents coefficients from estimating effect of smart meter deployment on the
loss rate when restricting the sample to only include utilities with low pre-treatment loss
rates (i.e., initially high performers). Provides a falsification test, as no effect is expected.
All specifications are estimated using our 2SLS procedure. Local market controls are (ihs)
new construction build and (log) population, and a one-year treatment variable lead is used
as the excluded instrument for (log) population. Standard errors are clustered at the utility
level. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table C2: Effect of Smart Meters on Loss Rate Using OLS Instead of 2SLS

Dependent Variable: Loss Rate Loss Rate Loss Rate Loss Rate

(1) (2) (3) (4)

Panel A: Binary Treatment

PostAMI -0.001%* -0.002%*** -0.002* -0.003**
(0.001) (0.001) (0.001) (0.001)
Observations 15,556 11,754 13,455 10,172

Panel B: Continuous Treatment

Prop. AMI -0.003*** -0.003%** -0.003*** -0.004 %
(0.001) (0.001) (0.001) (0.001)
Observations 15,556 11,754 13,455 10,172
Sample Restrictions:
Omit Initially High Performers X X
Include 3+ Years Post-Adoption Only X X
Utility FEs X X X b
State-Year FEs X X X X
Local Market Controls X X X X

Notes: Table presents estimates from running the same regressions as in the main results table (Table 2) but
using OLS rather than 2SLS. The dependent variable is the loss rate in all cases. Panel A uses our primary
(binary) treatment variable to estimate the effect of AMI, and in Panel B, we replace this with a continuous
treatment variable measured as the proportion of a utility’s customers that have AMI. Local market controls
are (ihs) new construction build and (log) population. Standard errors are clustered at the utility level. As-
terisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table C3: Doubly-Robust Stacked Diff-in-Diff Estimates

Dep. Var.: Loss Rate Loss Rate Loss Rate Loss Rate
(1) (2) (3) (4)

Post AMI -0.002** -0.003*** -0.002** -0.003***
(0.001) (0.001) (0.001) (0.001)
Observations 14,259 10,786 14,259 10,786
Control Group Never Treated Never Treated All All
Sample Full Omit High Full Omit High
Perf. Perf.
Utility FEs X b'd X X
Year FEs X X X X
Controls X X X X

Notes: Regression results from implementing the “stacked” doubly robust DiD method of Sant’Anna
and Zhao (2020) based on stabilized inverse probability weighting and OLS. In Columns 1 and 2,
only utilities that are never treated are included in the control group and untreated observations
are included in the control group in Columns 3 and 4. In Columns 2 and 4, we omit the bottom
quartile of the pre-treatment loss rate distribution (i.e., high pre-treatment performers). The de-
pendent variable is the loss rate in all cases. Local market controls are (ihs) new construction build
and (log) population. Standard errors are clustered at the utility level. Asterisks denote *p <0.10,

**p <0.05, ***p <0.01.
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Table C4: SUTVA - Investigating Whether Spillovers Bias the Results

Dependent Variable:

Loss Rate Imports

(1) (2)

Exports

3)

Post AMI -0.002%* -0.022 -0.082
(0.001) (0.067) (0.068)
Post Neighbor Deploying 0.000
(0.001)
Observations 14,252 14,252 14,252
Utility FEs X X X
State-Year FEs X b b
Local Market Controls X X X

Notes: Table provides results from tests exploring whether SUTVA might be violated. The depen-
dent variable in Column 1 is the loss rate. In Columns 2 and 3, it is (ihs) imported and exported
electricity from neighboring utilities, respectively. Neighboring utilities are defined as those serving
the same county. All specifications are estimated using our baseline 2SLS procedure. Local market
controls are (ihs) new construction build and (log) population, and a one-year treatment variable lead
is used as the excluded instrument for (log) population. Standard errors are clustered at the utility

level. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table C5: OLS Results for Provision of Complementary Products

Dependent Variable: Dyn. Dem. Sales/ Sales/ Loss Loss
Pricing Resp. Cust. Cust. Rate Rate
(1) (2) (3) (4) (5) (6)
Post AMI 0.071*¥** 0.065*** 0.011* 0.014*** -0.001 -0.001
(0.014)  (0.012)  (0.006)  (0.005)  (0.001)  (0.001)
PostAMI x DP -0.026* 0.000
(0.015) (0.001)
DP 0.007 -0.000
(0.011) (0.001)
PostAMI x DR -0.052%** -0.001
(0.018) (0.001)
DR 0.024* -0.001
(0.012) (0.001)
Observations 15,556 15,556 15,556 15,556 15,556 15,556
Utility FEs X X X X X X
State-Year FEs b'e b'e b'e X X X
Local Mkt. Controls X b'e b'e b'e b'e b'e

Notes: Table presents OLS results related to products that could enhance the benefits of AMI
(dynamic pricing and demand response programs) for comparison to the 2SLS results of Table

3. In Columns 1-2, dependent variables are indicators for whether utilities offer dynamic pricing

or demand response programs, respectively. In Columns 3-4, the dependent variable is (logged)

sales per customer, and in Columns 5-6, it is the loss rate. In all regressions, the year prior to

initial AMI adoption (“-17) is the omitted year. Standard errors are clustered at the utility level.
Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table C6: Robustness Checks for Reorganization of Workers Results

Dep. Var. (log): Number of Employment
(1) (2) (3) (4)

Panel A: Exclude MSAs with AMI Deployment before 2008 or after 2017

PostAMI x Billing -0.186*** -0.182%#*
(0.041) (0.041)
Post AMI x Quant 0.070%** 0.065%**
(0.019) (0.019)
Observations 56,763 54,102 56,763 55,162

Panel B: Exclude MSAs with AMI Deployment before 2009 or after 2017

PostAMI x Billing -0.189%*** -0.187#%*
(0.058) (0.058)

PostAMI x Quant 0.043* 0.037
(0.025) (0.025)

Observations 32,951 31,410 32,951 31,986

MSA-Occupation FEs X X X X

MSA-Year FEs X X X X

Drop Quants X

Drop Meter Readers X

Notes: Table provides results from estimating effects on the number of employment when re-
stricting the sample in different ways that align with the restrictions imposed in our main anal-
yses using utility-level data. In Panel A, we exclude MSAs with any AMI deployment before
2008 or after 2017. In Panel B, we exclude MSAs with any AMI deployment before 2009 or after
2017. Dependent variable is the logarithm of employment by MSA-occupation-year. Standard
errors are clustered by MSA area. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table C7: Summary Statistics of Key Variables by Utility Ownership

All Utilities Adopters Pre-AMI Non-Adopters
Gov Coop 10U Gov Coop 10U Gov Coop 10U
(1) (2) (3) (4) (5) (6) (7) (8) (9)
Loss Rate (%) 0.048 0.058 0.054 0.045 0.058 0.051 0.050 0.061 0.057
(0.027)  (0.023) (0.028) (0.024) (0.022)  (0.024)  (0.028) (0.026) (0.033)
Total Losses (000s MWh) 22.59 28.46 668.86 28.78 30.20 1051.20 13.00 26.77 343.97
(90.10)  (35.86) (857.39) (94.45) (33.70) (1069.21) (21.99) (43.97) (402.10)
Total Sales (000s MWh) 477 530 10948 623 564 16578 273 442 6063
(1414)  (732)  (12950) (1635)  (837)  (14951)  (472)  (563)  (8086)
Total Revenue (million) 45.9 52.4 1169.3 56.2 52.7 1674.6 25.1 44.2 620.7
(160.7)  (65.0) (1574.6) (177.3) (64.5) (1840.3)  (42.9)  (57.2)  (740.1)
No. of Customers (000s) 17.88 23.87 599.19 22.11 24.10 770.93 10.32 21.36 331.53
(60.70)  (28.02) (838.84) (65.39) (25.16) (912.61) (21.35)  (29.28) (389.93)
Sales per Cust. (MWh) 36.71 24.49 22.90 29.90 24.18 26.63 42.23 25.24 21.14
(190.01) (20.31) (14.83) (13.13) (20.44)  (11.05)  (251.15) (22.50) (16.94)
Rev. per Cust. (000s) 3.31 2.38 2.32 2.63 2.24 2.41 3.79 2.42 2.25
(16.18)  (1.38)  (1.16)  (0.94) (1.27)  (0.77)  (21.39)  (1.56)  (1.35)
Avg. Prices ($/kWh) 0.097 0.107 0.119 0.093 0.101 0.101 0.097 0.108 0.131
(0.028) (0.036) (0.058) (0.022) (0.031) (0.040) (0.031)  (0.046) (0.067)
Observations 7,709 5,642 901 2,002 2,015 222 4,399 1,730 417
No. of Utilities 707 515 82 303 357 44 404 158 38

Notes: Table provides summary statistics of key variables by utility ownership separately for
government-owned utilities, cooperatives, and investor-owned utilities (IOUs). Standard er-
rors are in parentheses. Data are from the Energy Information Administration for the years
2007 through 2017.



Table C8: Smart Meter Deployment Intensity Effects on Loss
Rates by Utility Ownership

Dependent Variable: Loss Rate Loss Rate Loss Rate

(1) (2) 3)

Gov-Owned Cooperatives I10Us

Prop. AMI -0.005%** -0.002%** -0.000
(0.002) (0.001) (0.005)
Observations 9,845 10,458 7,019
Estimate as % Change 11.1% 3.4% 0%
Mean Pre-Treat DV 0.045 0.058 0.051
Utility FEs X b X
State-Year FEs X X X
Local Market Controls X b X

Notes: Table presents results for change in loss rate following AMI deployment
by ownership when using a continuous treatment (proportion of customers with
AMI). Results for government-owned utilities, cooperatives, and IOUs are pre-
sented separately in Columns 1-3, respectively. The control groups include all util-
ities without AMI despite ownership type whereas the treatment groups in each
case only include utilities with AMI within a specific ownership group. In all re-
gressions, we estimate the model of Equation 2 following our 2SLS approach, using
a one-year lead of the binary AMI treatment variable as the excluded instrument
for log(population) and the year prior to initial AMI adoption (“-1”) as the omit-
ted year. Local market controls include population and new building construction
within counties that the utility serves. Mean values of dependent variable are cal-
culated using pre-treatment observations for AMI adopters. Standard errors are
clustered at the utility level. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table C9:

Cost-Benefit Analysis on Payback Period

Sample

Full Sample

Omit Initially
High Performers

(2)

Include 3+
Years
Post-Adoption

(3)

Omit Initially
High Performers
and Include 3+
Years
Post-Adoption

(4)

A. Benefit: Revenue Increase
Estimated Avg Effect on Revenue
Avg Pre-AMI Revenue ($ million)
Revenue Increase ($ million)

B. Cost: Meter Installation
Average Customer Numbers

Assumed Cost per Meter Installation (%)
Total Cost ($ million)

C. Payback Period (years)
Discounting at 3%
Discounting at 5%
Discounting at 7%

0.009
139.30
1.25

62,273
200
12.45

12
15
18

0.014
141.60
1.98

66,515
200
13.30

8
9
10

0.017
139.30
2.37

62,273
200
12.45

6
7
7

0.022
141.60
3.12

66,515
200
13.30

5
>
6

Notes: Table presents the key components of the cost-benefit analysis used to calculate the payback period for AMI deployment. Panel A
reports the estimated benefits from increased revenue due to AMI adoption, calculated by multiplying the estimated average effect of AMI
on revenue (from Table 6) by the average pre-AMI revenue for AMI adopters. Panel B reports the installation costs of AMI, assuming a per-
meter installation cost of $200 based on Greenough (2015)’s 2015 estimate. Total installation costs are calculated by multiplying this unit
cost by the average number of customers. Panel C reports the payback period in years, calculated using discount rates of 3%, 5%, and 7%.
We assume that installation costs are incurred upfront, and the revenue gains from Panel A materialize as fixed annual cash flows received at
the end of each year. Columns (1) through (4) correspond to different sample restrictions, aligned with the subsamples reported in Table 6.
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Figure D1: Utilities” AMI Deployment Timing and Diffusion Rates

Notes: Figure illustrates utilities’ deployment and customers’ adoption of AMI over time. Panel A plots
the cumulative proportion of utilities with any AMI deployed each year from 2007 through 2017. Panel
B plots the number of utilities that start to deploy AMI each year for the treated utilities included in
our main estimation sample (i.e., utilities that first deploy between 2010 and 2016). Panel C plots the
average proportion of utilities’ customers that have AMI by the number of years following a utility’s initial

deployment year for the treated utilities included in our main estimation sample.
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log(population)

8+ 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7+
Years relative to initial AMI roll-out
Pretrends p-value =  0.08

Figure D2: Dynamics of (Log) Population Around the First Year of Smart Meter
Deployment

Notes: Figure plots estimates of coefficients §; from Equation 1 using (log) population as the dependent

variable with the year prior to initial AMI adoption (“-1”) as the omitted year. Baseline fixed effects and

controls included (besides population). Standard errors are clustered at the utility level.
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Figure D3: Heterogeneous Effects of Smart Meter Deployment on Loss Rate by
Pre-Treatment Performance

Notes: Figure illustrates heterogeneous effects of AMI deployment on loss rates by pre-treatment perfor-
mance. Panel A includes utilities that were above the bottom quartile of the pre-treatment loss rate dis-
tribution (i.e., initially poor performers) and Panel B includes utilities that were in the bottom quartile
(i.e., initially high performers). Plots provide coefficients 5; and their 95 percent confidence intervals from
estimating Equation 1 with our 2SLS estimator, using a one year lead of the AMI treatment variable as the
excluded instrument for log(population) and omitting the year prior to initial AMI adoption (“-17). Baseline
fixed effects and controls included. Standard errors are clustered at the utility level.
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Figure D4: Comparison of Results When Using OLS versus 2SLS Augmentation

Notes: Figure illustrates the importance of implementing our 2SLS estimator to examine the effects of AMI
deployment by comparing the effects on losses when just using OLS (Panels A and C) relative to when using
the 2SLS approach (Panels B and D). Plots provide coefficients 5; and their 95 percent confidence intervals
from estimating Equation 1, omitting the year prior to initial AMI adoption (“-1”). In Panels B and D,
we use a one year lead of the AMI treatment variable as the excluded instrument for log(population). In
Panel A, there is a slight pre-trend in loss rates, and since this could be dampened by an opposing pre-trend
in total disposition, we also look at total losses and find a stronger pre-trend (Panel C). These pre-trends
disappear when using the 2SLS approach. Utility fixed effects, state-year fixed effects, and local market

controls are included. Standard errors are clustered at the utility level.
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Figure D5: Heterogeneous Effects of Smart Meter Deployment on Loss Rate for
Comparably-Sized “Smaller” Utilities

Notes: Figure plots heterogeneous effects of smart meter deployment on loss rates by utility ownership when
omitting “large” investor-owned utilities, defining large as those with a pre-treatment average size exceeding
the maximum pre-treatment average size of non-IOUs. The sub-samples for government-owned utilities and
cooperatives are thus the same as they are in the main heterogeneity by ownership analysis but the IOU
sub-sample omits large IOUs. This provides a sample of comparably-sized utilities. Plots provide coefficients
B; and their 95 percent confidence intervals from estimating Equation 1 with our 2SLS estimator, using a
one year lead of the AMI treatment variable as the excluded instrument for log(population) and omitting
the year prior to initial AMI adoption (“-1”). Utility fixed effects, state-year fixed effects, and local market

controls are included. Standard errors are clustered at the utility level.
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Figure D6: Average Proportion of Customers with AMI by Utility Ownership

Notes: Figure plots the average proportion of customers with AMI (measured as the number of AMI meters
over number of customers within utility) by utility ownership.
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Figure D7: Effects on Loss Rates by Ownership and Electricity Market Deregulation
Notes: Figure plots results for the effect of AMI on loss rates when splitting the sample by utility ownership

and whether the utility is located in a state with any electricity market deregulation. Utility fixed effects,

state-year fixed effects, and local market controls are included. Standard errors are clustered by utility.
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Figure D8: Effects on Average Prices by Ownership

Notes: Figure plots results for the effect of AMI on (log) average prices by ownership. Utility fixed effects,

state-year fixed effects, and local market controls are included. Standard errors are clustered by utility.
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