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Abstract

This paper examines how digitalization impacts public service provision through a study
of the U.S. power sector. We exploit the staggered timing of electric utilities’ investments
in “smart” meters and find that electricity losses per unit sold decrease by 3.6%. This
efficiency improvement is driven by a 5.9% reduction in total losses and 1.2% increase in
sales. Additional results suggest this occurs through improvements in energy management.
The effects are driven by government-owned utilities as opposed to privately-owned. Through
a supplementary analysis of within-utility electricity reliability in Texas, we also find that
digitalization decreased power outage duration but not frequency.
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1 Introduction

Economic activity—from business and industrial operations to healthcare and transporta-

tion—hinges on having a reliable supply of electricity. However, electricity grids in many

countries are aging and increasingly susceptible to disruptions. Power outages in the United

States alone cost between $28 and $169 billion annually (ASCE, 2021). Although severe

weather is a common cause, other factors such as equipment failure and utility practices

affect quality of service as well (EIA, 2021). The ability to manage the grid more efficiently

will be especially important for ensuring grid resilience moving forward. In an effort to

mitigate climate change, deployment of renewable energy sources with variable output and

electrification of end-use products are accelerating. These shifting dynamics are intensifying

demands on the system and introducing new challenges for utilities.

Digitalization is frequently discussed as being an important part of the solution, as

“smart grid” technologies can, in theory, help monitor and optimize operations and improve

system flexibility (Joskow, 2012). Advances in data storage, computation, and transmission

are transforming most industries, and electricity is no exception. However, despite the

hundreds of billions of dollars spent each year globally on modernizing electricity grids (IEA,

2023), whether digitalization delivers on its promises remains contentious.1 The benefits

depend on how utilities actually use the technology, but research remains thin.

In fact, little is known about the effects of digitalization on the provision of public ser-

vices more generally. In the private sector context, information and communications tech-

nologies have been shown to enhance firm performance (Brynjolfsson and Hitt, 2003; Bartel,

Ichniowski and Shaw, 2007; Brynjolfsson and Saunders, 2013; Goldfarb and Tucker, 2019).

Organizations providing public services—like utilities, hospitals, and schools—operate under

different conditions than those providing private goods or services though, so previous find-

ings may not transfer. For example, they are often heavily-regulated and face different mar-

ket forces (e.g., less competition), bureaucratic processes, and budgetary constraints. These

1Many utilities are not fully exploiting the technology’s capabilities and therefore not accruing all of the
potential benefits (Gold, Waters and York, 2020). Smart meters are also promoted as tools for empowering
consumers to better-manage electricity use and reduce their bills, but access to data is often difficult, re-
sulting in limited cost savings. For example, less than 3% of meters funded by the American Recovery and
Reinvestment Act had real-time data features enabled a decade after installation (Utility Dive, 2022).
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factors may influence whether they realize the potential benefits of digitalization because

doing so may depend on complementary organizational capital, such as business processes,

management practices, and skills (Brynjolfsson and Hitt, 2000; Bresnahan, Brynjolfsson and

Hitt, 2002; Bloom, Sadun and Van Reenen, 2012; Brynjolfsson, Rock and Syverson, 2021).

In this paper, we provide evidence as to how digitalization impacts public service pro-

vision. Public services exhibit significant variation in quality and are notoriously difficult

to study. To narrow this gap, we examine the effects of electric utilities’ investments in

advanced metering infrastructure (AMI) “smart meters” on utility performance and service

quality across the U.S. from 2007 through 2017. Utilities historically relied on analog meters

that were developed in the 1800s to track electricity consumption, requiring manual in-person

readings and providing utilities with sparse, imprecise data. Deployment of AMI acceler-

ated about 15 years ago, though, entailing substantial public and private expenditures, and

the industry is now going through a “digital revolution.” Approximately 119 million smart

meters were installed in the U.S. as of 2022 (EIA, 2022).2

Smart meters provide real-time consumption and power quality data that can help

utilities improve performance by reducing operational costs and enhancing billing accuracy,

load management, and system monitoring. They also can improve reliability if utilities use

the information on power outage location to restore power faster. There even is potential for

reducing outage frequency. For example, as smart meters enable demand response programs

that incentivize end-users to reduce consumption or shift energy use away from peak periods,

outages due to excess demand may decrease.

Estimating the causal effects of digitalization on public service provision is empirically

challenging for multiple reasons. First, technology adoption may be driven by endogenous

organization-specific characteristics, such as how well-resourced or inherently innovative the

utilities are, as well as local economic growth. To overcome this, we use the staggered timing

of utilities’ smart meter deployments and augment our difference-in-differences design with

a two-stage least squares (2SLS) approach that removes pre-trends. It does so by exploiting

covariates that are related to smart meter deployment only through unobserved confounds.

The method is akin to Freyaldenhoven, Hansen and Shapiro (2019) and entails finding a proxy

2This is approximately 72% of total U.S. electric meters (EIA, 2022).
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variable for confounders and instrumenting for it using leads of the treatment variable.

Furthermore, studying public services more generally is difficult due to challenges evalu-

ating service quality for all customers and providers within an industry.3 The U.S. electricity

sector provides a unique setting in which utilities serve (just about) all electricity customers

and they must report standardized operational and system information annually. We com-

piled data on these performance indicators as well as smart meter installations and utility

characteristics (primarily from the U.S. Energy Information Administration). To study elec-

tricity reliability, we transcribed feeder line level (i.e., within-utility) power outage duration

and frequency data for Texas from Public Utility Commission reports.

We start by examining the effects of smart meters on electricity losses and sales, two

outcomes that capture multiple aspects of utility performance. Electricity losses—the dif-

ference between power supplied to the distribution system and that for which customers

are billed—translate into costs for utilities. Although losing some power is unavoidable due

to the physical properties of the system, high losses can reflect inefficiencies. For example,

losses increase when the system is overloaded (i.e., demand exceeds a system’s constraints).

Given that line losses increase exponentially when the grid is constrained, better load man-

agement can reduce losses. Losses also increase when voltage fluctuates or equipment ages.

This is a complex relationship, as power quality and reliability can both contribute to, and

be exacerbated by, high losses.4

Sales refer to the amount of electricity for which customers are billed. Perhaps counter-

intuitively, both increases and decreases in sales could signal performance improvements.

Sales could decrease if customers use smart meter data to reduce consumption (and thus

their electricity bills).5 Consumption changes also could help utilities’ with load manage-

3For example, mortality is a frequently studied outcome to proxy for quality when studying healthcare.
This clearly captures an important impact on customers and some aspects of quality, but it is mostly relevant
for a select set of patients (e.g., patients that are very ill) and work to date mostly focuses on hospitals, which
is just one type of healthcare service provider. Quality of service for other types of patients, services, and
providers could include factors like the amount of time doctors spend with patients or diagnosis accuracy,
which are much more difficult to measure consistently at scale.

4Power quality is lower when voltage is low (e.g., flickering or dimming of lights), and since voltage
fluctuations can contribute to losses, high losses could reflect a poorer quality of power for end-users. Non-
technical factors like meter tampering can also contribute to losses.

5Customers also may value having more detailed information in general, reflecting an improvement in
quality of services from the customer’s perspective.
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ment. At the same time, given consumption measurement was subject to human error with

older technology, an increase in sales could reflect improved billing accuracy and processes.

Furthermore, sales could increase if utilities use AMI to address bill non-payment and elec-

tricity theft, benefits that are commonly reported by utilities (U.S. DOE, 2016). Finally,

sales may increase if a utility’s customer base grows, which may occur if AMI attracts new

customers given the additional products that it enables.6

We find that smart meter deployment improves utility performance in multiple ways.

First, on average, losses per unit sold (henceforth “losses per sale”) decrease by 3.6% relative

to the pre-treatment mean. This efficiency improvement occurs through a 5.9% decrease in

total losses as well as a 1.2% increase in total sales. Losses per sale decrease by 7.7% for

utilities in the highest quartile of the pre-treatment losses per sale distribution. The decrease

in total losses on average grows to approximately 7.6% after three years, which is consistent

with utilities needing time to learn and to invest in organizational capital, such as new

business processes and worker capabilities, for the performance benefits to materialize.

Next, we explore whether the sales increase is driven by sales per customer or number

of customers. We find that both contribute. The former is consistent with more accurate

billing and utilities leveraging the automated data to improve their operations and processes,

while the latter suggests that utilities’ customer bases grow. Our regressions directly control

for some potential drivers of higher customer counts, such as population growth and new

building construction. Dynamic pricing and other demand response programs increased after

smart meter deployment, consistent with the potential explanation that smart meters may

help attract new customers that value these products.

To further probe whether utilities make operational and energy management adjust-

ments with AMI adoption, we examine the composition of the utility sector’s local workforce.

Integrating smart technologies and leveraging their capabilities to improve decision-making

requires workers with different skills relative to those required with the traditional meters.

Using the Occupational Employment and Wage Statistics data provided by the U.S. Bureau

of Labor Statistics, we indeed find a reduction in meter readers. Utilities also appear to

6An increase in the customer base also could be due to local economic development as opposed to at-
tracting new customers, but we control for this directly, as discussed later in the paper.
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hire more “quants”—individuals like computer scientists who are equipped with the skills to

analyze data and build energy system optimization models—which is consistent with utilities

making organizational investments that can enhance the benefits of digitalization.

We use our data on power outages in Texas to examine whether reliability improves,

which also can provide insight on whether utilities use smart meters to respond to outages

faster or avoid them altogether. Following smart meter deployment, outage duration de-

creases by 5.5%, suggesting that utilities indeed use the technology to restore power faster.

However, we find no reduction in outage frequency. This suggests that, although energy man-

agement improvements—such as enhanced system monitoring and load management—can

enhance performance via reductions in losses and power outage duration, other solutions are

needed to reduce the number of outages.

Taken together, our findings indicate that digitalization can enhance service quality

and that energy management improvements are at play. This, in turn, implies that realizing

the benefits of digitalization may depend on organizational capital (e.g., business processes,

worker skills, etc.). To explore this further, we examine the heterogeneity in effects across

utility ownership structure. Like many other public services, electricity providers can be

either government- or privately-owned, resulting in different managerial incentives and con-

straints that may impact performance (e.g., profit-maximization versus social objectives)

(Hart, Shleifer and Vishny, 1997; Shleifer, 1998; Duggan, 2000).7 For example, since investor-

owned utilities face pressures from shareholders to maximize short run profits, they may be

less inclined to make costly and time-consuming investments that would improve service in

the long run. Government-owned utilities may be more likely to make such investments

because their customers are their constituents.

We find that the effects on losses and sales are driven entirely by government-owned

utilities as opposed to those that are investor-owned or operate as cooperatives. Differences

in other observable characteristics, like pre-treatment size and performance, do not account

for the heterogeneity. These results are consistent with how organizational factors that

generate incentives for improving energy management and quality of service may contribute

to whether the benefits of digitalization materialize.

7Utilities’ technology adoption decisions also may differ by ownership type (Rose and Joskow, 1990).
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Summary of Contributions

This paper makes four main contributions. First, we provide new evidence on whether

digitalization can improve electric utility performance and service quality. The infrastructure

upon which economic activity relies is deteriorating in many countries. At the same time,

utilities are facing new energy management challenges that impact reliability, as an increasing

share of energy supply is coming from intermittent renewable resources and electrification

of end-use products (e.g., vehicles) is rising, putting more pressure on the grid.

Although experts agree on the need for significant grid investment—and policymakers

carved out $13 billion for grid modernization in the 2022 Infrastructure Investment and

Jobs Act—the effects of smart meters on service provision have been under-studied.8 A

related but distinct literature examines whether interventions facilitated by smart meters, like

providing information and introducing new pricing designs, impact consumption (Jessoe and

Rapson, 2014; Ito, Ida and Tanaka, 2018; Burkhardt, Gillingham and Kopalle, forthcoming).

To the best of our knowledge, we are the first to examine how utilities use these digital

technologies and the effects on system performance and service quality. More generally, there

is scant economics research on ways to improve reliability in developed countries (Borenstein,

Bushnell and Mansur, 2023).9

Second, we contribute to the evolving literature on digitalization. Research examining

how some digital technologies impact firm performance dates back to the 1990s and spans

many fields of economics (see Draca, Sadun and Van Reenen (2009) and Goldfarb and Tucker

(2019) for reviews). However, much less is known about the effects on public services,

besides in healthcare (see Bronsoler, Doyle and Van Reenen (2022) for a review). Our study

extends this literature to the electricity context while also allowing us to address two key

challenges faced in the broader public services context as well. First, quality of services is

notoriously difficult to measure (in both public and private settings). For example, mortality

is a commonly-used indicator in health economics, which captures an outcome for consumers

8The American Recovery and Reinvestment Act of 2009 provided $4.5 billion for smart grid investments.
9There is a more extensive literature on reliability issues and electricity services in developing countries

(Fisher-Vanden, Mansur and Wang, 2015; Trimble, Kojima, Arroyo and Mohammadzadeh, 2016; Allcott,
Collard-Wexler and O’Connell, 2016; Zhang, 2018; Carranza and Meeks, 2021; Meeks, Omuraliev, Isaev and
Wang, 2023), but the challenges (and therefore the solutions) are fundamentally different.
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but not quality of service itself.10 Our indicators relate to service provision and quality

directly. Second, digitalization of healthcare studies tend to focus on a specific type of

organization (e.g., hospitals) and therefore a select set of customers (e.g., inpatients). We

study nearly all service providers across an entire industry within a country.

Third, our paper contributes to the relatively limited set of papers examining man-

agement of public services. Similar to the digital economics literature, the importance of

management practices for private sector firm performance has been well-documented (Bloom

and Van Reenen, 2007; Bloom, Brynjolfsson, Foster, Jarmin, Patnaik, Saporta-Eksten and

Van Reenen, 2019; Gosnell, List and Metcalfe, 2020). There is very little on public service

providers.11 Bloom, Lemos, Sadun and Van Reenen (2020) and Bloom, Propper, Seiler and

Van Reenen (2015a) study the role of location and competition for hospital performance and

management, respectively, but not the effects of management on services. Bloom, Lemos,

Sadun and Van Reenen (2015b) show that higher management quality in schools is correlated

with better student outcomes, but data limitations prohibit a causal analysis.

Lastly, we contribute to the literature on privatization of public services. Understanding

the implications of firm ownership is a long-standing issue in economics and private provision

of public services is particularly controversial. However, research to date mostly focuses on

how it affects financial outcomes.12 We do not estimate the effects of privatization, but

we add to this literature by documenting heterogeneity in the benefits of digitalization for

service quality and provider performance across ownership types.

2 Background

In this section, we provide background information on electricity distribution systems in

the U.S., indicators of the distribution companies’ performance, and the ways in which

10People may die because of their conditions even if the quality of service is perfect. Some measures of
service quality itself might include time spent with patients, diagnosis processes and accuracy, etc.

11A related nascent literature examines managers in the public sector (Janke, Propper and Sadun, 2019;
Otero and Munoz, 2022; Fenizia, 2022), but individual attributes and organization-level practices are two
separate channels through which management impacts performance (Metcalfe, Sollaci and Syverson, 2023).

12Recent exceptions study the impact on prison inmates (Mukherjee, 2021) and healthcare consumers
(Bergman, Johansson, Lundberg and Spagnolo, 2016; Duggan, Gupta, Jackson and Templeton, 2023) but
not on service quality directly.
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digitalization could improve utilities’ performance in the electricity sector.

2.1 Electricity Distribution in the U.S.

Electric grids are complex networks that deliver energy to consumers. They are comprised of

power plants that generate electricity that is transferred to population centers through high-

voltage transmission lines. Electricity is then delivered to end-use customers (residential,

commercial, and industrial) through the local distribution system. The U.S. distribution

system is expansive, serving 145 million end-users through 5.5 million miles of local dis-

tribution lines (EIA, 2016). In addition to the wires that transfer electricity to end-users,

distribution systems also include substations and transformers that reduce (“step down”)

voltage to a level appropriate for end-users’ equipment, and meters to monitor consumption.

The quality of service experienced by electricity utilities’ customers is important for

ensuring a well-functioning economy and high quality of life. Poor reliability (i.e., power

outages) and power quality (i.e., voltage fluctuations) are costly for end-users. Even minor

voltage fluctuations or brief outages can damage expensive machinery or shut down industrial

processes. When service interruptions impact electronic medical equipment and devices or

transportation systems, they can also be life-threatening.

Over the past decade, reliability declined in the U.S., with both outage frequency and

duration increasing. The average customer experienced about seven hours of power inter-

ruptions in 2021, which is almost double the average outage time in 2013. Reliability also

varies substantially across the country, with power interruptions ranging from 52 minutes

in the District of Columbia to 80 hours in Louisiana (EIA, 2021). Many major outages are

caused by extreme weather events, which include storms as well as extreme temperatures

(both hot and cold), since such conditions lead to higher demand for air conditioning and

heat. However, the grid is also aging—approximately 70% of transmission and distribution

lines were constructed in the early- to mid-1900s and are now in the second half of their

life expectancy (ASCE, 2021)—and increasingly vulnerable to disruptions due to equipment

malfunction, poor utility practices, and overload (i.e., demand exceeding supply).

Many of these vulnerabilities could be addressed by upgrading technology to improve

energy management. Until the early 2010s, most electricity meters—located at customers’
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premises to measure electricity consumption—were antiquated and unsophisticated (Munas-

inghe, 1981). The majority of U.S. end-users had conventional electro-mechanical meters

that were developed in the late 1800s and predate other now obsolete technologies, such

as the rotary phone (Smitherman, Nelson and Jr, 2010). The functionality of these older

meters is extremely limited. For example, they require utilities to perform many tasks in

person, such as reading meters to generate bills and manually disconnecting and reconnect-

ing customers (e.g., when customers move or have not paid their bills). These limitations

impose high operational costs, introduce human error, and provide no insight into when and

where outages occur. This means service restoration requires significant time; end-users re-

port outages to the utilities and field crews then deploy to locate the outage source. Lastly,

conventional meters limit the potential for dynamic pricing and demand response programs,

preventing opportunities for utilities to incentivize end-users to adjust consumption patterns.

2.2 Electric Utility Performance

Electricity distribution in the U.S. is managed by approximately 1,300 utilities that are re-

sponsible for selling and delivering reliable electricity to end-users.13 Energy management

by these utilities typically entails planning, controlling, storing, and distributing electricity

with the objective of maximizing efficiency and minimizing the costs of operations and main-

tenance (e.g., distribution system upkeep and repairs, billing, emergency response, safety

and regulatory compliance, and customer care). With 92% of the country’s service inter-

ruptions occurring within the distribution system (ASCE, 2021), the performance of these

utilities plays a pronounced role in the quality of service experienced by end-users. One key

source of variation across utilities—which potentially affects performance—is their owner-

ship structure. Utilities can be investor-owned (i.e., private), government-owned (i.e., owned

by municipalities, the state, or the federal government), or cooperatives that are non-profits

governed by their members (U.S. Department of Energy, 2015), and each of these comes

with different incentives and constraints.

Utility performance can be measured in multiple ways and we start with two objective

13The U.S. has more than 3,200 electric utilities when also counting those responsible for generation and
transmission. Some utility activities differ if they also control those components.
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and quantifiable indicators that capture various aspects of their performance: electricity

losses and sales. Electricity losses are a primary measure of the “efficiency and financial

sustainability of the power sector” (Jiménez, Serebrisky and Mercado, 2014). They refer

to and are measured as the difference between the electricity delivered to transmission and

distribution systems and the amount for which customers are billed and pay. Electricity

losses represent a decrease in utilities’ revenue, as they pay for the electricity delivered

to the system, even if it is not billed to end-users. Electricity losses are problematic for

consumers as well, as they negatively affect reliability and power quality. And, in some

cases, consumers bear the costs of losses if they are passed through to prices or other charges

(Costa-Campi, Dav́ı-Arderius and Trujillo-Baute, 2018).

Some degree of “technical” losses occur due to natural dissipation along distribution

lines. These are unavoidable due to the physical properties of the system, such as conductor

resistance. As a result, even in high income countries with efficient transmission and distri-

bution systems, losses are between 6 and 8 percent of total electricity output (Jiménez et al.,

2014). At the same time, line losses are exacerbated by other factors, such as increases in

load and voltage fluctuations (Jiménez et al., 2014).14 High losses, therefore, may reflect poor

energy management or a history of insufficient maintenance and upgrades. Losses also can

occur due to “non-technical” factors, like illegal cable hooking to bypass meters or incorrect

electricity meter readings due to outdated and damaged technology or meter tampering.15

The second indicator of utility performance is electricity sales, which is the quantity of

electricity billed to consumers. Greater sales could increase utility revenue, assuming there

are no corresponding tariff decreases. Whether sales are measured on a per customer basis

or in total can provide slightly different information about utility performance and its impli-

cations for consumers, which we discuss in the next sub-section. Overall, sales are important

for utilities’ fiscal sustainability and could also improve the quality of service experienced by

customers if revenue is reinvested to improve grid resilience and energy management.

14Low voltage can cause system instability or collapse. High voltages can exceed equipment capabilities.
Furthermore, as energy losses transform into heat (they are resistance multiplied by the current squared),
they can subsequently lead to lines stretching and sagging such that they come into contact with surrounding
objects and cause a fault, which also can permanently damage the line (FERC, 2020).

15Non-technical losses are typically higher in low and middle income countries than in high income coun-
tries, such as the U.S. (Jiménez et al., 2014).
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2.3 Can Digitalization Improve Utility Performance?

In the electricity distribution context, digitalization entails investing in advanced metering

infrastructure (AMI). This includes an integrated system comprised of “smart” meters in-

stalled at end user premises, a communication network (either wired or wireless) to transmit

information between the meters and the distribution company, and meter data management

systems (Gold et al., 2020). Although investments in AMI initially progressed slowly in the

U.S., deployment increased rapidly in the 2010s.16

How can digitalization improve utility performance? There are two main mechanisms:

benefits that emerge mechanically from the technological features alone and those resulting

from capitalizing on AMI’s functionalities to improve energy management.

2.3.1 Mechanical Effects from Technology Features

Investing in AMI may have immediate mechanical effects on utilities’ performance given the

technological features of smart meters relative to old or damaged meters. First, smart me-

ters measure consumption accurately and usually in real time. On the other hand, analog

meters were read manually, so consumption measurement was subject to human error (and

estimated when workers could not access customers’ premises). If the incumbent technol-

ogy was consistently under-measuring consumption, billed sales per customer may increase

following smart meter deployment (even if actual consumption does not change).17

Other features of the technology can also improve utility performance mechanically.

For example, smart meters can shut down grid connections automatically if voltage spikes or

dips outside of the range that engineers determine is safe. This can improve both utilities’

financial performance and quality of service for consumers by protecting against voltage

fluctuations (i.e., poor power quality), equipment damage, and the probability of costly

future disruptions.

16This “digital revolution” of the electricity sector extends well-beyond the U.S. as well. For example, in
2013 alone, approximately $15 billion were invested in smart grids worldwide (IEA, 2015).

17How this affects customers is ambiguous. It could increase satisfaction if consumers value billing accuracy
or if billing errors previously created distrust. However, they may dislike facing higher bills for the same
quantity of electricity power previously consumed.
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2.3.2 Energy Management

There are four main ways in which AMI can improve energy management which, in turn,

can enhance utility performance. First, AMI’s remote transmission of consumption data

eliminates the need to send employees to manually read meters at consumers’ premises.

This can reduce labor and transportation billing-related costs and is often cited as a key

motivation for utility investment in AMI.18 Although this represents an operational efficiency

gain either way, the net effect on labor costs depends on the extent to which the utility then

hires workers with skills that can help them capitalize on the potential benefits of AMI. New

employees may include computer scientists and software engineers who can analyze high

frequency data and improve energy system optimization models, for example.

Second, remote data collection can improve billing accuracy, which is associated with

reduced customer complaints and faster resolution of billing disputes (U.S. DOE, 2016).

Remote data transmission circumvents the need to estimate consumption or interpolate bills

when in-person meter readings are not possible. Further, it decreases human error in the

billing process, as billing no longer relies on manual data entry (Nangia, Oguah and Gaba,

2016; Cooper and Shuster, 2021). Utilities can also make organizational and technological

investments to integrate their data management systems with billing processes to streamline

their business practices and operations, reflecting improvements in energy management.

Third, AMI allows utilities to offer consumers additional products, such as demand

response programs and dynamic pricing options. These can enhance utility performance

through behavioral changes made by either the utility or consumers. Smart meters provide

utilities with granular data, two-way real-time communications, and the ability to control

supply remotely, which allows them to analyze and forecast consumption more accurately

and improve load management.19 Furthermore, these products permit customers to learn

about their electricity use patterns and to shift consumption away from high-priced periods,

18Prior to AMI, some utilities replaced conventional electro-mechanical meters with automatic meter read-
ing (AMR) systems, which can broadcast consumption data within a very limited distance and permit remote
disconnection (USAID, 2009). These provide some operational cost savings relative to electro-mechanical
meters, as employees could collect consumption data by driving around neighborhoods; however, their ca-
pabilities fall short of AMI.

19These types programs could be implemented to some degree with intermediary technologies deployed
prior to AMI, like AMR, but the granularity and real-time nature of AMI data allow for much more precision.
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potentially reducing their electricity bills. For these reasons, smart meters could attract new

customers, enhancing utilities’ customer base (and thus sales and revenue).20

Lastly, deploying smart meters also may reduce outage duration and/or frequency, im-

proving utility performance by reducing costs associated with restoration, enhancing revenue

that otherwise would be lost, and improving quality of service experienced by end-users.21

Smart meters often have a “last gasp” functionality that notifies utilities immediately of ser-

vice disruptions and allows them to identify the precise location of outages (U.S. Department

of Energy, 2014c). While the alert itself is mechanical in nature, improving performance by

restoring service faster requires utilities to use the data to make decisions related to dis-

patching repair crews more quickly and to the correct locations.

The preceding three energy management changes and their resulting improvements —in-

creasing billing accuracy, shifting load to off-peak times, and reducing the duration and fre-

quency of service interruptions —could each directly and substantially affect losses and sales,

the two key indicators of utility performance that we study. For example, improved billing

accuracy may increase billed sales, as previously discussed. This enhances utilities’ recovered

revenue and, mechanically, translates into lower losses per sale. Moreover, shifting load from

peak to off-peak times could reduce congestion, which in turn, reduces losses (Costa-Campi

et al., 2018). Finally, utilities can use the real-time data to enhance forecasting capabilities,

improve load management, and identify bottlenecks or other threats to the grid (Nangia et

al., 2016; Gold et al., 2020), each of which can also lower losses.

3 Data and Sample Construction

We construct three data sets that are used throughout this paper. The first is at the utility

level, linking information on U.S. electric utilities’ performance, characteristics, and smart

meter deployment, which we use for the majority of our analyses. We construct two addi-

tional data sets for exploring the mechanisms driving our results: feeder line-level data on

20This would be consistent with some evidence in the literature that investing in new technologies can
help attract customers through quality differentiation (Lu, Rui and Seidmann, 2018).

21These potential improvements are frequently reported as a motivation for smart grid investments in
various government reports and on utilities’ websites (U.S. Department of Energy, 2014a,b; Duke Energy
Progress, 2020; BC Hydro, 2016; Sprinz, 2018).
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power outages for Texas and regional-level occupation data for the U.S. This section provides

an overview of the data; additional details can be found in Appendix A.

3.1 Smart Meter Deployment and Utility Performance

To compile utility-level data on smart meter deployment and performance, we start with

data from the U.S. Energy Information Administration (EIA)’s annual census of all electric

utilities in the U.S. (Form EIA-861). It includes information on smart meter deployment,

performance measures such as electricity losses and sales, operational data, dynamic pricing

and demand response programs, and select utility characteristics. We collect data for the

years 2007 (the first year in which AMI deployment data are available) through 2017 to

construct several key variables of interest.

First, we create the variables for initial smart meter deployment (our main treatment

variable) and deployment rates (the intensity of treatment). We use the number of electric

meters that fall within each meter type (conventional or AMI) and use the first year in

which the number of AMI meters is greater than zero as the year of initial smart meter

deployment. We measure deployment rate as the ratio of total AMI meters to the total

number of customers.

We also use these data to construct our utility performance measures, including total

sales and sales per customer (both in megawatt hours), electricity losses per sale (which is

the electricity lost per unit of electricity sold and therefore is measured as a %), revenue

per customer (which reflects customers’ average annual spending on electricity bills), and

revenue per unit sold (which reflects the average annual electricity price). The EIA data

reports electric operating revenue from different sources, including retail sales to end-users,

delivery customers, sales for resale, transmission, and other electric activities. We take the

sum of these to get total revenue. Furthermore, we use these data to identify whether utilities

offer products like demand response programs and dynamic pricing, including the number of

customers enrolled and the year in which such services were introduced (using the first year

in which there are more than zero customers enrolled).

Lastly, we gather additional information on utilities’ time-invariant characteristics like

location and service territory from EIA-861, and ownership type and business scope from
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S&P Global Market Intelligence.

3.2 Service Territory Population and Housing

We use two other key pieces of information throughout our main utility-level analyses—local

population and new building construction—that we collected from other sources. We ob-

tained county-level population data from the Survey of Epidemiology and End Results

(SEER) and data on new building units from the U.S. Census’ Building Permits Survey

(BPS). Using the electric service territory information from EIA-861, we merge these county-

level population and housing data with the EIA utility-level data, summing the population

and housing measures for all counties that the utility serves.22

3.3 Baseline Sample Construction and Summary Statistics

After merging the data sets described above, we take a few additional steps to prepare the

data for our empirical analyses that we detail in Appendix A. One important sample selection

rule that we apply is omitting utilities that do not operate in the distribution segment of

electricity delivery. We also limit the sample to include only utilities that either adopted

AMI smart meters between the years 2010 through 2016 or did not adopt at all (but while

keeping observations from 2007 through 2017). This allows us to include at least three years

of pre-treatment data and one year of post-treatment data for all adopters. We also omit

observations for which our key variables appear to be data entry errors (such as negative

values for losses, sales, and customer counts).

Our final utility-level data set for the U.S. includes 14,241 observations across 1,303

utilities between 2007 and 2017.23 Table 1 provides summary statistics. Column 1 provides

the means and standard deviations of our main variables of interest for the full estima-

tion sample. The average percentage of sales lost is about 5.7% and utilities serve about

57,000 customers on average. We also provide summary statistics separately for adopters

22Some counties are served by multiple utilities, so there is some double-counting of population and
housing, but such measures are not available at the utility level. This should not bias our estimates, though.

23Because of the instrumental variable approach that we take, we actually gather data for the year 2018
as well, but 2018 is omitted when running the regressions because of using the lead policy variable as an
excluded instrument (see Section 4).
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in pre-treatment years (Column 2) and non-adopters (across all years) (Column 3) to ex-

plore whether they exhibit different characteristics. Those that eventually adopt AMI have

slightly lower losses per sale in pre-treatment years relative to non-adopters but are much

larger on average, as can be seen from how total sales and the number of customers served.

We describe how we address this in our empirical approach in Section 4.

3.4 Additional Data

3.4.1 Regional Occupation Employment

When exploring the mechanisms through which AMI affects utility performance, we examine

worker composition, since integrating smart meters and using the data that they generate

reduces the need for meter readers while possibly requiring more software or data analysis-

oriented workers. We assemble data on local occupation employment for each Metropolitan

(MSA) and non-metropolitan (non-MSA) area from the Occupational Employment andWage

Statistics (OEWS) provided by the U.S. Bureau of Labor Statistics (BLS). These data pro-

vide annual information on total employment for each occupation category dating back to

1997. We extract the area-level employment information for the 2007-2018 period. Although

these data do not differentiate occupations and employment by industry, all meter readers

are associated with utilities, which we verified with state–industry level employment data

(whereas other occupations could be in various sectors).24 As a result, occupations such as

meter readers may be associated with non-electric utilities (e.g., gas or water) as well.

3.4.2 Electricity Reliability in Texas

To explore whether utilities use smart meters to improve electricity reliability, we examine

the impact of AMI deployment on power outage duration and frequency for the state of

Texas.25 We manually transcribed and compiled outage data at the feeder line level—the

24We collect data on employment estimates by state and industry from the U.S. BLS, which is derived
from sample surveys. This data provides annual industry-specific estimates on the number of employment for
each occupation category in each state after 2012. Using this data, we confirm that the occupation category
associated with meter readers (i.e., 43-5041) only appears within utility industry (i.e., the corresponding
two-digit NAICS code is 22).

25We study Texas because the U.S. outage data do not start until 2013 and, by that time, many utilities
had already started to deploy AMI. In contrast, the Texas within-utility data starts in 2007.
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power lines that carry electricity from substations to local or regional service areas—from the

Public Utility Commission of Texas. Reliability is measured by two standard indices: System

Average Interruption Duration Index (SAIDI) (the average duration of outages within a year)

and System Average Interruption Frequency Index (SAIFI) (the average number of outages

per year). This feeder line-level data set covers 7,294 feeder lines across 10 utilities operating

in Texas between 2007 to 2016.

4 Empirical Strategy and Identification

4.1 Research Designs

Our primary goal is to identify the causal impact of smart meter deployment on utility

performance. Estimating the effects using a simple OLS approach may be plagued by various

endogeneity concerns. Utilities that choose to invest in AMI may differ systematically from

those that do not—they may already be better-managed or more innovative, or alternatively,

they may be experiencing an increase in electricity losses or diminished performance in other

ways such that AMI could provide significant benefits. The likelihood or timing of adoption

also may be correlated with local economic growth, consumer preferences, and other changing

market characteristics, which may simultaneously impact our outcomes of interest.

To address these concerns, we use quasi-experimental variation in AMI meter installa-

tions by utilities over time, implementing event study and staggered difference-in-differences

research designs augmented with a two-stage least squares (2SLS) approach similar to the

one developed by Freyaldenhoven et al. (2019). This augmentation is designed to remove

the effects of any pre-trends in the outcomes and provides the treatment effects net of the

potential confound.

Event study. To start, we estimate an event study model to compare before and after

differences in outcomes relative to initial deployment year as follows:

Yit =
∑
k ̸=−1

βk1[t− τi = k] + αi + γst + δX′
it + εit. (1)
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where Yit denotes the respective outcome measure of interest for utility i in year t. We

are primarily interested in βk, the coefficients on indicator variables representing the AMI

deployment event years, whereby we use the first year when utility i deploys smart meters as

the treatment year and k represents the gap between the current year t and initial deployment

year τi. We exclude the dummy for k = −1 so that the pre- and post- treatment effects are

relative to one year prior to the start of AMI deployment.

We include utility fixed effects (αi) to control for time-invariant differences between

utilities and state-year fixed effects (γst) to account for state-specific time-varying factors,

such as market and policy conditions. We also control for some local observable time-varying

characteristics in the matrix Xit, which includes new building construction and population

in counties within the utility’s service region.26 We cluster standard errors at the utility

level.

Staggered difference-in-differences. To summarize the dynamic effects of AMI adop-

tion, we also estimate the average effect within a pooled staggered difference-in-differences

framework as follows:

Yit = β1AMIit + αi + γst + δ′Xit + εit, (2)

where Yit denotes the outcome of interest for utility i in year t, AMIit is the main treatment

indicator for smart meter adoption equal to one starting in the year the utility has deployed

AMI and zero otherwise. We include the same set of fixed effects and controls as before and

cluster standard errors at the utility level.

If we were to make no other adjustments to the event study and staggered difference-in-

differences designs, identifying the causal effects of smart meter deployment would rest upon

three key assumptions: 1) utility-level outcomes would have evolved along parallel trends

absent treatment, 2) the average treatment effects do not vary by treatment timing, and

3) there are no spillover effects on untreated utilities (i.e., the stable unit treatment value

assumption (SUTVA) holds). We now discuss the ways that we address concerns regarding

potential violations of these assumptions.

26We use the inverse hyperbolic sine of new building construction because it contains zeros and use the
log of population.
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Identification and Extracting Pre-Trends.— The event study approach of Equation 1

allows us to explore the dynamic effects of smart meter deployment. We can examine whether

there appear to be differences in outcomes for untreated and treated units in pre-treatment

years (i.e., whether there are pre-trends), which has been the common practice for indirectly

investigating whether the parallel trends assumption holds. However, recent studies note

that such tests may be insufficient, as they may fail to detect pre-trends simply due to low

statistical power (Freyaldenhoven et al., 2019; Roth, 2022; Roth, Sant’Anna, Bilinski and

Poe, 2022). In a study of electric utilities, the concern is that even after including utility

fixed effects, state-year fixed effects, and controls for some market trends in our baseline

regressions, unobserved confounds may still exist.

In our specific setting, the main concern is that we cannot directly control for all local

time-varying market and regional characteristics that may simultaneously impact the deci-

sion to deploy smart meters and the outcomes of interest. To address this, we follow the

approach developed by Freyaldenhoven et al. (2019), which allows for causal identification

of the treatment by removing the effects of pre-trends using an instrumental variables (IV)

approach. The basic idea is to find a “proxy” variable for the unobserved confound and,

instead of simply including the variable as a control, to instrument for it using leads of the

treatment variable within a two-stage least-squares framework. The key assumption is that

the “proxy” variable is affected by the unobserved confound (e.g., economic growth) but not

by the treatment.27

The main task, therefore, is to find a variable that follows a pattern similar to that

which is expected of the unobserved confound but is not driven by the utilities’ smart meter

investment decisions. We use the log of population as our proxy, as it is likely correlated with

underlying forces associated with changing preferences (e.g., local economic growth) but is

likely not directly determined by AMI deployment.28 In addition, we continue to control for

new construction build. We explore whether population is a suitable proxy and illustrate the

27As detailed in Freyaldenhoven et al. (2019), the approach removes the pre-trend effect such that estimated
effects are net of the confound (i.e., the remaining dynamics of the outcome represent the causal effect).
Freyaldenhoven et al. (2019) show that this approach outperforms alternative methods commonly applied in
the literature to address potential pre-trends.

28As discussed earlier, we observe population at the county level, so we take the sum of the population in
counties that fall within the utility’s service territory.
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approach’s effectiveness in removing the estimated effect of the pre-trend when presenting

our results in Section 5.

4.2 Other Identification Concerns

Potential Bias in Staggered Treatment Setting. A rapidly growing literature shows

that staggered difference-in-differences models may produce biased estimates when treat-

ment effects are heterogeneous across units and over time (Goodman-Bacon, 2021; Callaway

and Sant’Anna, 2021; Sun and Abraham, 2021).29 For reasons similar to the potential endo-

geneity of AMI deployment timing, one may be concerned about such heterogeneous effects

in our setting. That is, some utilities may be more innovative and thus adopt earlier, and

more innovative utilities may more effectively improve quality of service by leveraging the

technology’s data and communications capabilities. Changing consumer preferences due to

local population or economic growth also may induce utilities to adopt at different times,

and if those utilities have more resources, the treatment effects may vary. Our 2SLS strategy

addresses the primary concerns, but we also implement some of the other newly developed

approaches as robustness checks in Section 5.4.

SUTVA. The final assumption is that there are no spillover effects on untreated units, as

is always the case in difference-in-differences estimations. In our setting, the assumption is

that a utility’s deployment of smart meters does not affect other utilities’ outcomes. This

could be violated if, say, smart meters reduce line losses and this benefits nearby utilities

that do not invest in AMI by reducing pressure on their system as well, as all distribution

lines are ultimately connected to an interdependent grid and electricity flows across service

territory boundaries. Spillovers are most likely to occur between utilities that share borders.

As we describe later in Section 5.4.2, such spillovers should attenuate our results if anything.

However, we probe this by carrying out various robustness checks in Section 5.4.2—such as

dropping neighboring utilities from the sample—and the results are not affected.

29Estimates from models like the one depicted in Equation 2 are weighted averages of all possible 2×2
difference-in-differences between treated and untreated groups at different points in time and, therefore, may
be biased if effects are heterogeneous across units or over time and result in negative weights.
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5 Effects of Smart Meters on Losses and Sales

This section first presents our main results for the effects of smart meter deployment on

electricity losses and sales. We then probe the identification assumptions.

5.1 Dynamic Effects

To begin, we estimate the dynamic effects of utilities’ smart meter roll-outs on our primary

measures of utility performance—electricity losses and sales. This allows us to visualize the

main effects and to investigate whether the 2SLS approach seems to address endogeneity

concerns. We plot the estimated coefficients βk and their 95% confidence intervals in Figure

2, with the x -axis indicating the number of years relative to initial AMI deployment. Plots

in the left column include estimates from a standard OLS approach (before extracting poten-

tially confounding pre-trends). The plots in the right column are from the 2SLS estimator,

whereby we use a one year lead of the AMI treatment variable as the excluded instrumental

variable for the log of population.

Losses per sale do not appear to exhibit a strong pre-trend when estimating the effects

using OLS (Panel A of Figure 2). However, as discussed earlier, this does not necessarily

imply that no such pre-trend exists. Furthermore, total electricity losses (Panel C) do appear

to exhibit an upward pre-trend and total sales decrease slightly at the same time. This is

consistent with one of the potential sources of endogeneity discussed in Section 4. Factors

like population growth could increase losses, as higher load could strain local infrastructure,

and population growth may simultaneously impact utilities’ decisions to invest. Consumer

characteristics may be evolving such that demand for smart meters increases, for example.30

To explore whether population is a suitable “proxy” variable for the unobserved con-

founder—which we then instrument for using leads of the treatment variable as per our 2SLS

approach—we examine the dynamics of population by estimating Equation 1 with (log) pop-

ulation as the dependent variable. We plot the coefficients in Appendix Figure B1. There

30We do not find the same pre-trend for total sales, but this is reasonable given how the relationship
between population growth and sales is ambiguous. For example, urbanization may lead to population
growth and more residential customers while large energy-intensive industrial firms may shut down. This
may still increase losses given the different load profiles while having no effect on total sales.
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indeed appears to be an upward sloping pre-trend similar to that observed for total electricity

losses and, as expected, the trend for population continues past the treatment period. This

suggests that population is likely a reasonable proxy, and as long as AMI deployment itself

is not driving population growth (i.e., the second identification assumption of the method),

our approach recovers the causal effect.

Once implementing the 2SLS estimator, the pre-trends in total losses and total sales

indeed disappear, and the event study plots now suggest that AMI improves utility perfor-

mance (see the right hand column of Figure 2). Losses per sale decrease (Panel B), and

although the effect is initially small, losses per sale continue to decline in the years follow-

ing deployment, leveling off after about 3 years. The efficiency improvement appears to

be driven by both a decrease in total losses (Panel D) as well as an increase in total sales

(Panel F). Total losses decline steadily and substantially until leveling off around a 10-20%

reduction after 3 years. Likewise, total electricity sales start to increase immediately and

reach approximately 3-4% after 5 years. A common policy objective for AMI is to empower

consumers to lower their electricity bills by reducing consumption, so it is worth noting that

our findings of increased sales do not necessarily mean an increase in consumption. Rather,

it could be that sales increase because of either improved consumption measurement and

billing accuracy or a growing customer base. We explore this further in Section 6.

Beyond reflecting performance improvements, these results also suggest that utility-side

behavior may be at play. Increasing effects over time post-deployment is consistent with how

the performance benefits of new technologies—particularly digital technologies with complex

capabilities—often do not materialize until after a period of complementary investments in

organizational capital, like new skills and processes (Brynjolfsson and Hitt, 2000; Bresnahan

et al., 2002; Brynjolfsson et al., 2021; Bronsoler et al., 2022).31 The benefits of AMI also

may scale with deployment intensity. We explore this further in the next sub-section.

5.2 Average Effects

Estimating the average effects following Equation 2 and using our 2SLS approach, we find

that losses per sale decrease by 0.002 percentage points (Column 1 in Panel A of Table

31Cutler (2011), among others, also makes this point when studying IT adoption in healthcare settings.
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2). This represents a 3.6% reduction relative to AMI adopters’ pre-treatment mean. The

efficiency improvement is driven by both a 5.9% decrease in total losses and 1.2% increase in

total sales (Columns 2 and 3 of Panel A). For comparison, we also provide the results from

the staggered difference-in-difference model using only OLS (see Appendix Table B1). These

coefficients can be interpreted as “unadjusted”—they include both the true causal effect as

well as the confounder effects. Without our methodological augmentation, the results would

have suggested that there are no statistically significant effects on any of the three outcomes.

The benefits of smart meter adoption also may scale with intensity of treatment (i.e.,

the proportion of customers with smart meters), so our estimates of the average effects may

understate the true improvements. We estimate the effects of deployment intensity and find

that losses per sale decrease by 5.4% relative to the pre-treatment mean (Column 1 of Panel

B in Table 2) when going from no smart meters to 100% deployment.32 The increase in the

effect is driven by the sales component, as the effect on total losses decreases slightly and

the effect on total sales doubles to 2.5% (Columns 2 and 3 of Panel B).

Figure 2 also suggests that the effects of AMI increase over time. This can occur for a few

reasons. It may take time for utilities to develop the necessary skills to effectively leverage

smart meter capabilities, for example, or to invest in complementary AMI technologies (like

data management systems). Therefore, our estimates may be attenuated by the relatively

small effects on performance in the early years of deployment. To explore this, we omit the

year of initial deployment and the two years thereafter such that the estimates reflect the

benefits three years post-deployment forward.33 Although the effects on losses per sale and

total sales are the same as the full deployment case (Columns 1 and 3 of Panel C in Table 2),

the magnitude of the effect on total losses is much larger: losses decrease by 7.6% (Column

2 of Panel C). We investigate the underlying mechanisms in Section 6.

32The excluded instrument in this case is a one year lead for the proportion of customers with AMI as
opposed to the AMI treatment indicator.

33All years of data are still included for utilities that never adopt AMI.

23



5.3 Heterogeneity by Pre-Treatment Losses

As discussed in Section 2, even in well-maintained distribution systems, some low level of line

losses are expected given the natural dissipation that occurs. There may be very little room

to improve for some utilities. Our estimates of the average effect across all utilities, therefore,

may understate the potential benefits of digitalization for utilities that are performing poorly.

We estimate the AMI deployment effects separately for utilities that were in the highest

quartile of the losses per sale among AMI adopters in pre-treatment years and those that

were in the lowest quartile.34 Results are presented in Table 3. As expected, the effects for

utilities previously experiencing the highest losses per sale (Panel A) are much larger than

what we found on average. Losses per sale decrease by 7.7% for these utilities relative to

their mean pre-treatment losses per sale of 9.1%. Total losses decrease by 7.9% and total

sales increase by 3%. In contrast, there is no effect on losses or sales for those utilities that

were already high-performers (Panel B).

5.4 Robustness Checks

5.4.1 Treatment Effect Heterogeneity Across Adoption Time Periods

Recent literature points to several reasons to be cautious when interpreting estimates from

staggered difference-in-difference research designs. One strand addresses the parallel trends

assumption and how the standard tests examining treated and control groups in pre-treatment

years may not detect statistically significant differences simply because of low statistical

power (Roth, 2022). We address this by extracting the effects of pre-trends directly follow-

ing the proposed 2SLS method of Freyaldenhoven et al. (2019), which we apply throughout

all of our main analyses.

Another potential concern relates to treatment effect heterogeneity across time periods

in which treatment occurs. In the multi-period staggered treatment context, coefficients

from standard TWFE models are convex weighted averages that include early-treated units

as part of the control group for later-treated units, and if treatment effects differ based

on treatment timing, such estimates do not identify an average treatment effect (e.g., see

34Non-adopters in each sub-sample are those with losses per sale under or over the same cutoffs.
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Borusyak, Jaravel and Spiess (2021), de Chaisemartin and D’Haultfoeuille (2020), Goodman-

Bacon (2021), Callaway and Sant’Anna (2021), Sun and Abraham (2021)).

To probe this concern, we implement Callaway and Sant’Anna (2021)’s “doubly robust”

DiD method using stabilized inverse probability weighting. The approach essentially allows

group-time average treatment effects on the treated to be nonparametrically point-identified

and aggregated, whereby a “group” is defined based on the time period when units (i.e.,

utilities) are first treated. The results are presented in Appendix Table B2. We first only

include never-treated units in the control group (Panel A) and then add not-yet-treated units

to the control group (Panels B). The estimates are similar to our baseline findings in both

cases, with losses per sale decreasing by 0.002 percentage points and total losses decreasing

by about 4%. With this approach, the effect on total sales is no longer statistically significant

(and the coefficient decreases); however, we consider the 2SLS approach more reliable given

it removes the effects of pre-trends, addressing the main identification concern in our setting.

Furthermore, we estimate the same model but include only utilities in the highest quar-

tile of pre-treatment losses—those for which the effects should be most substantial—as we

did in Section 5.3. Reassuringly, the magnitudes of the effects on losses per sale and total

losses are nearly identical to when using the 2SLS approach for the same set of utilities (and

are statistically significant at the 1% level) (Columns 1 and 2 of Appendix Table B3). Losses

per sale decrease by 0.007 percentage points and total losses decrease by a little more than

8%. The effect on total sales is again not statistically significant, but the magnitude of the

effect is higher than when estimating the average effect (1.2-1.4%). Overall, these findings

are consistent with smart meter deployment improving utility performance.

5.4.2 SUTVA

A final key assumption underlying difference-in-differences research designs is that there are

no spillover effects from the treatment on untreated utilities (i.e., the stable unit treatment

value assumption (SUTVA) holds). This might be a concern because many utilities’ distri-

bution lines are ultimately all connected to the same grid, so electrons can flow across utility

borders. In our context, spillovers would likely attenuate the estimates, since declining losses

in one region might also improve system performance (i.e., reduce losses) in neighboring re-
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gions. Nonetheless, we explore the possibility of SUTVA violations in two ways. First, we

control for whether a neighboring utility deployed smart meters and find that the results do

not change (see Columns 1-3 of Appendix Table B4).35 We next estimate the effects of AMI

on the amount of power received/imported from other utilities and the amount of power

exported/delivered to other utilities. If the adoption of AMI in one utility’s service area

negatively affects the grid in others’ service areas, we might expect changes in exported and

imported power. We find no statistically significant effects on either (see Columns 4 and 5

of Appendix Table B4).

6 Innovation in Energy Management

Our results thus far suggest that smart meter deployment can improve electricity service

provider performance as measured by reductions in losses and increases in sales. In this

section, we shift to developing a better understanding of the underlying mechanisms through

which these improvements are achieved.

6.1 Billing Accuracy and Competitiveness

One potential benefit of smart meters is that utilities can use them to improve billing pro-

cesses in ways that could reduce some labor and transportation costs while also increasing

billing accuracy. Smart meters provide consumption data remotely (and usually in real

time), whereas conventional meters must be read manually by utility workers. Although we

do not directly observe labor costs, we can explore whether utilities appear to make such

improvements in a few ways. To do so, we first decompose the effect of AMI meters on

total electricity sales (in this sub-section). Then, in a later sub-section, we examine the local

workforce composition and provide additional insights into potential billing process changes.

Our finding that total sales increase could result from an increase in either sales per

customer or the total number of customers (or both). These reflect different mechanisms

underlying the performance improvements. If sales per customer increase, then total sales

35Since we do not observe the exact utility border locations in our data, we define utilities as neighbors if
they serve customers in the same county.
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may increase due to more accurate electricity consumption measurement and billing (condi-

tional on end-users not actually increasing consumption). These increases could result from

the technology’s mechanical effects and enhanced billing accuracy.

Total electricity sales also may increase due to a growing customer base. To ensure that

the increase in number of customers could simply reflect local economic growth within the

utility’s service area, all of our regressions control directly for the number of new buildings.

Additionally, our instrumental variable approach helps address ways in which local economic

growth might impact outcomes. Any increase in the number of customers, while holding new

construction and population constant, therefore, is likely associated with a customer base

that is growing for other reasons. For example, smart meters may force previously informal

customers to shift to formal connections or simply an increase in metering of individual en-

tities at locations previously sharing one meter (e.g., buildings with multiple apartments).

Alternatively, smart meters may attract customers that are particularly interested in gaining

information on their energy use, using the products that AMI enables (like demand response

programs), or improving the accuracy of their electricity bills. This would make utilities with

AMI more competitive. Since using AMI to gain customers requires effective customer en-

gagement, including investments in communications and marketing, this also would suggest

that utilities are taking additional actions to realize the potential benefits of AMI.

We estimate the effects of AMI deployment on both sales per customer and the number

of customers. The event study plots are in Figure 3. In Panel A, we find a small but

immediate increase in sales per customer that continues to increase slightly over time, but

then levels off after approximately one year. The immediacy of the effect is consistent with

the smart meters measuring consumption more accurately and/or utilities making billing

process adjustments relatively quickly, which is reasonable since this is one of the more basic

uses of smart meter data. On the other hand, the increase in the number of customers

emerges much more gradually, which is consistent with utilities needing time to invest in

new communications and marketing efforts to attract new customers.

The coefficient estimates from pooling the data are in Appendix Table B5. In Panel A,

the main effects on both outcomes using the full baseline sample are not statistically signif-

icant but have the expected positive signs. However, when examining treatment intensity,
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going from zero smart meters to full deployment (Panel B) increases sales per customer by

approximately 2.1%. The magnitude of this effect could reasonably be explained by an im-

provement in consumption measurement accuracy. The number of customers still does not

increase with treatment intensity, but this is consistent with how it takes time to attract new

customers. As expected, once omitting the year of initial deployment and the two years that

follow (Panel C), we find a 1.1% increase in the number of customers (which is statistically

significant at the 10% level). At the same time, there is no statistically significant effect on

sales per customer at this point; this could be due to statistical power, although the point

estimate also decreases slightly.36

6.2 Introducing Dynamic Pricing and Demand Response Programs

Smart meters provide utilities with opportunities to introduce or improve dynamic pricing

and other demand response programs, and doing so signals improved performance.37 These

additional products could attract new customers. Furthermore, as these programs aim to

incentivize end-users to reduce consumption or shift the timing of energy use away from

high-demand periods, they could reduce losses and improve grid resilience.38

To investigate whether utilities introduce these types of programs after AMI deploy-

ment, we estimate the AMI effects on availability of these products. We do so using indicator

variables equal to one when the number of customers using dynamic pricing and demand re-

sponse programs becomes positive and zero otherwise. The results are presented in Columns

1 and 2 of Table 4. On average, the likelihood of introducing these services indeed increases

by 3.9% and 3.3% for dynamic pricing and demand response programs, respectively (Panel

A). The effects increase slightly to 4.7% and 4.9% when utilities go from no deployment

to full deployment (Panel A of Appendix Table B6). When dropping the first two years

post-deployment, the likelihood of using these programs increases to 7% and 6.5% (Panel B

36We cannot say definitively why this effect may diminish over time. One potential explanation is that
consumers do eventually adjust, such as by making energy efficiency investments.

37Some forms of dynamic pricing, such as seasonal pricing, can be implemented without smart meters,
while others could be more useful for intra-day load balancing, like tariff structures that apply different rates
throughout the day. Similarly, demand response programs can be defined broadly and some forms could
have been used without smart meters as well.

38Line losses increase exponentially when the grid is overloaded given the relationship between consumption
and current.
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of Appendix Table B6).

Next, to test whether offering these programs may be one driver of utility competitive-

ness, we estimate the effect of AMI interacted with the indicators for dynamic pricing and

demand response programs (see Columns 3 and 4 of Table 4). Indeed, the provision of these

products drives the increase in utilities’ customer base.

Depending on consumer responsiveness, these products also may contribute to lower

electricity losses if consumption changes alleviate constraints on the grid during high-demand

periods. We do not observe the timing of consumption to test this directly. To explore it

indirectly, we estimate the interaction effects of AMI deployment and the use of dynamic

pricing or demand response programs on sales per customer and losses per sale (Columns

5-7 in Table 4). There are two key takeaways. First, both products offset the increases in

sales per customer, suggesting some degree of consumer responsiveness (Columns 5 and 6 of

Table 4). However, the effects are relatively small, and they do not seem to account for any

of the reductions in losses per sale (Columns 7 and 8).39 This is consistent with other recent

work studying a large-scale deployment of smart thermostats, whereby there is no significant

effect on energy use (Brandon, Clapp, List, Metcalfe and Price, 2022). Our findings suggest

that, although reductions in sales from the use of these programs can provide some system

benefits (e.g., reduce the need for additional capacity investments), they are not substantial

enough to improve electricity losses on their own.

6.3 Organizational Capital

If utilities use the AMI to directly transmit consumption data to their billing systems, then

we should observe a decrease in the number of utility meter readers employed by utili-

ties. Furthermore, fully realizing the benefits of AMI—beyond just a reduction in labor

costs—may also require additional investments in complementary technologies, communi-

cations networks, and human capital. This is because integrating the new technology and

analyzing the data that it provides in order to improve load management and voltage opti-

mization requires advanced data analysis and forecasting skills.

We do not observe the number or type of workers at the utility level to test this directly.

39The same is true for total losses but the results are omitted from the table for space purposes.
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To explore workforce composition as a proxy for organizational change, though, we gather

annual metropolitan service area (MSA) by occupation data to examine whether there is

a reduction in local employment of utility meter readers and/or an increase in data and

software engineering-oriented workers.40

We first provide graphical evidence on the relationship between the composition of

workers in the local labor market and AMI adoption. In each panel of Figure 5, the horizontal

axes represent the proportion of customers that are AMI within an MSA. The vertical axes

are the residuals of the logarithm of employment after absorbing the MSA fixed effects,

population, and building units. We classify the occupations into three categories—meter

readers, quantitative and computation jobs, and others—and show the binned-scatter plot

for each of the category. Panels A and B of Figure 5 provide compelling evidence that AMI

deployment is associated with a decline in meter readers and an increase in quantitative and

computation jobs. In contrast, there is no clear pattern between AMI adoption and other

jobs (Panel C), which is reassuring.

To quantify the effects, we estimate the following triple-difference model:

Yijt = βAMIit × RelatedOCCj + αij + δit + εijt. (3)

The outcome variable is the logarithm of the number of employment in MSA i for occu-

pation j in year t. AMIit is a binary indicator for whether any utility operating in MSA i

has deployed AMI in year t. RelatedOCCj is a binary indicator for AMI-related occupation,

which is defined as either meter readers (denoted by “Billing”) or quantitative and computa-

tion jobs (denoted by “Quant”). We control for macroeconomic shocks, such as population

growth and regional economic policies, which may affect the number of workers differently

across locations with MSA-year fixed effects and for time-invariant differences in the labor

force across MSAs with MSA-occupation fixed effects. The coefficient of interest, β, cap-

tures how the number of employment for meter readers or quantitative and computation

jobs within an MSA area is changing relative to other unrelated occupations.

40The MSA-level data does not specify industry, but as the meter reader occupation category covers only
the utilities sector (electricity, gas, and water), we can be fairly confident that changes in this occupation
category are strongly correlated with changes in electricity utilities specifically.
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Table 5 presents the estimation results. In Column 1, we find that the number of meter

readers decreases by 18.6% relative to other occupations. We also drop observations associ-

ated with quantitative and computation jobs in Column 2, because if there is a simultaneous

increase in these types of workers due to AMI adoption, they would make a poor control

group. We still find an 18.2% decrease in meter readers. We carry out the same exercise to

estimate the effect for quantitative and computation jobs, and indeed find that they increase

by 7.4% relative to other occupations, as shown in Column 3. When omitting meter readers

from this estimation to address potential SUTVA violations, we again find a 6.8% increase

in quantitative and computation jobs.

We also limit the sample to include only MSAs that either deployed AMI between the

years 2008 and 2016 or do not deploy at all.41 Panel A of Table B7 reports the estimates,

which are similar to those in Table 5. In Panel B, we further exclude the MSAs that

already deployed smart meters by 2008 and the estimated effects are similar. For quantitative

and computation jobs, the coefficient estimates are smaller and become less statistically

significant, but this is likely due to sample size limitations.

Taken together, these findings suggest that, on average, utilities invest in organiza-

tional innovation with the adoption of smart meters. This is consistent with management

innovation being an underlying driver of the service provision improvements.

6.4 Reliability: Power Outage Frequency and Duration

Although lower electricity losses signal that the system is more stable and less vulnerable to

technical issues and disturbances, losses are not a direct measure of reliability as experienced

by end-users. We therefore examine the effects on power outage duration and frequency

directly by compiling feeder-line level data on power outage frequency and duration for

utilities in Texas.42 Examining power outages also provides insight into whether and how

utilities make management and operational adjustments with AMI. That is, while smart

meters notify utilities automatically and immediately of when and where power outages

41In our utility-level analysis, we limit the sample of utilities with AMI to those that deployed between
2010 and 2016, but we do not impose such a restriction here because most (291 out of 434) MSAs have at
least one utility with AMI by then, so we would lose more than 80% of the sample.

42Within-utility variation allows us to control for utility-level trends.
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occur, utilities must engage with the information transmitted by the smart meters and

respond accordingly to reduce outage duration. Furthermore, smart meters may even provide

utilities with opportunities to avoid outages altogether if load management improvements

alleviate constraints that otherwise would have led to a disturbance.

We estimate the following model:

Yijt = β1AMIjt + αi + γt + δ′Xjt + εijt, (4)

where Yijt denotes the reliability outcome for feeder line i of utility j in year t and the

indicator AMIjt is utility-level AMI deployment treatment variable defined as before. We

include feeder line-level fixed effects (αi) to control for time-invariant line-specific factors that

may impact reliability as well as year fixed effects (γt) to account for changing conditions

over time that are common across all feeder lines in Texas. The matrix Xjt includes the

same controls as in our baseline analyses as well as utility-year linear trends in some cases,

as having within-utility variation allows us to control for how utilities and their customers

may be changing differently over time.

The results are presented in Table 6 and are consistent with utilities indeed using the

smart meters to respond to outages.43 Outage duration (i.e., the number of minutes of

sustained interruptions experienced by a utility’s average customer) decreases by 5.4-5.8%

following AMI deployment (Columns 1 and 2). On the other hand, we find no effect on

outage frequency, suggesting that further action beyond the energy management improve-

ments associated with reductions in losses—such as improved system monitoring and load

management—are required for avoiding outages in this setting.

6.5 Financial Benefits and Investment Payback

Our findings suggest that AMI could bolster utilities’ fiscal sustainability but we have not yet

discussed the economic significance of the effects. We cannot calculate all financial perfor-

mance benefits directly, as we do not observe some of the parameters required for examining

outcomes like labor costs associated with meter reading or power outage restoration. We

43We use the inverse hyperbolic sine for the outcomes here because of the presence of zeros.
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can, however, examine utilities’ revenue and the implications of reduced losses for costs.

First, increases in sales from improved billing accuracy suggest that utilities benefit from

enhanced revenue recovery, but utilities also may pass through cost savings to consumers by

reducing prices. We therefore start by estimating the effects of AMI deployment on total

revenue. The results are presented in Columns 1 and 2 of Table 7. When considering the

average effect for the full sample (Column 1, Panel A), we find that the increase in revenue

appears to be relatively small (0.9%).

When limiting the sample of adopting utilities to those in the top quartile of the pre-

treatment losses per sale distribution—utilities that have the most room for improvement

and that we previously found to benefit the most from AMI in Table 3—revenue increases

by 4.1% on average (Column 2 of Panel A). This represents an increase of $4.7 million per

year relative to the $115.5 million average pre-treatment annual revenue for AMI adopting

utilities in this sample. The effect increases to 6.5% when omitting the first three years of

deployment to capture the potential effects once time passes (Column 2, Panel C), which

leads to $7.5 million more revenue.

When estimating the effects of going from having no smart meters to full deployment for

the entire sample, we find that total revenue increases by 1.9% on average (Column 1, Panel

B) and by 5.5% for utilities in the top quartile of pre-treatment losses per sale (Column 2 of

Panel B). These represent increases of $2.66 million and $6.35 million per year, respectively,

relative to the pre-treatment averages for AMI adopting utilities in their respective sample.44

To put these revenue figures into context relative to the cost of investing in smart meters,

let’s assume that the total cost of installing a smart meter is $200 per meter including both

hardware and labor, which is likely on the high end and thus a conservative figure to use for

calculating the payback period.45 Utilities adopting AMI had 62,440 customers on average

in pre-treatment years in the full sample and 62,934 in the “high” pre-treatment losses

sub-sample such that full deployment for the average utility would cost about $12.49 and

$12.59 million, respectively. When considering the effect on revenue when going from no

44Average revenue in pre-treatment years for AMI adopting utilities is $139.8 million for the full sample
and $115.5 million for utilities in the “high” pre-treatment losses category.

45Cost estimates in 2015 were $200 (Greenough, 2015), and hardware costs have come down over time.
Recent increases in cost of labor may offset some of the hardware cost reductions, though.
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deployment to full deployment and no discounting (Panel B of Table 7), investing in AMI

smart meters pays off in about 4.7 years on average for the full sample and 1.98 years for

utilities with “high” pre-treatment losses. Note that these (relatively quick) payback periods

can be considered upper bounds since they only rely upon estimates of increased recovered

revenue as opposed to any cost reductions.

Second, reductions in electricity losses represent reductions in costs. We found that

total losses decrease by 5.9% on average for the full sample and 7.9% for utilities with high

pre-treatment losses. Considering that the average prices of electricity are $97.1 and $108.2

per MWh in these samples, respectively, the average cost savings resulting from reductions

in losses of $0.477 million on average for all AMI adopting utilities and $12.87 million for

those with high pre-treatment losses. Unsurprisingly, while there are particularly attractive

financial benefits for utilities with respect to recovered revenue even if utilities previously

were performing quite well, utilities with high pre-treatment losses have just as much to gain

from reducing losses (even before considering how the effect may increase over time).

We also find no change in prices (calculated as total revenue per unit sold ($/MWh),

on average (Columns 3 and 4 of Table 7). This is consistent with revenue increasing from

changes in sales (due to improved billing accuracy and a growing customer base), as opposed

to prices, and it suggests that utilities are not passing through the financial benefits. At the

same time, we do find that average prices increase by 3% in the longer run when omitting

the first three years post-deployment (Column 4, Panel C of Table 7). This represents a 0.3

cents per kWh increase relative to the pre-treatment mean price of 9.7 cents per kWh. The

aggregate effect on customers’ bills is relatively small. When considering the price increase,

pre-treatment mean sales per customer, and the 1.3% increase in sales per customer in the

long run (the estimate in Column 1, Panel C of Appendix Table B5), the average increase

in electricity bills is $35 per year (or $2.9 per month).46

46Initial annual bills are calculated using pre-treatment average sales per customer and prices. To calculate
post-AMI bills, we use pre-treatment sales per customer multiplied by 1.013 (to account for the 1.3% increase
in sales per customer) and pre-treatment prices multiplied by 1.03 (to account for the 3% increase in prices.)
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7 Implications of Utility Ownership

Although the utility sector historically has been slow to change and lagged behind other

sectors when it comes to innovation, our findings suggest that the reductions in losses and

increases in sales following AMI deployment are driven by improvements in energy manage-

ment. This, in turn, raises the question of what determines a utility’s incentive and capacity

to make the necessary investments in organizational capital to benefit from digitalization.

One potential explanation is utility ownership. On the one hand, economists have

long-argued that private firms aiming to maximize profits tend to be more productive and

innovative than those in the public sphere (Shleifer, 1998; Hart et al., 1997) and that privati-

zation can enhance the growth and efficiency of previously government-owned firms (Ehrlich,

Gallais-Hamonno, Liu and Lutter, 1994). At the same time, investor-owned utilities face

pressures from shareholders to earn profits (typically on a quarterly basis). This may dis-

suade them from making the additional costly and time-consuming investments beyond just

technology adoption itself—like upgrading old equipment or overhauling business practices

and processes—that improve quality of service but may take several years to pay off. On the

other hand, government-owned utilities do not face such pressures. If anything, they may be

even more inclined to focus on investments that provide substantial social benefits, as they

are usually elected officials and their customers are their constituents.

In this section, we explore whether ownership structure shapes the benefits that ma-

terialize from AMI. Given that utilities also differ on other observable dimensions across

ownership types, such as size (see Appendix Table B9), we end this section with evidence

that the heterogeneity we find is not driven by other observable differences.

7.1 Heterogeneity in Effects by Utility Ownership

We estimate the effects of smart meter deployment on our main performance indicators

separately by ownership type and a clear picture emerges. In the event study plots in Figure

4, the effects on losses per sale, total losses, and total sales are all driven by government-

owned utilities. Losses per sale and total losses start declining quickly (Panels A and B)—and

drastically relative to the average main effects in Figure 2—while total sales increase (Panel
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C). In contrast, there are no effects on any of these outcomes for IOUs or cooperatives.47

The effects on losses for government-owned utilities are also economically large (see

Appendix Table B10). For example, when considering the intensity of treatment results

(Panel B), we find that going from no deployment to full deployment reduces losses per

sale by 12.2% relative to the pre-treatment mean for utilities that deploy AMI and total

losses decrease by 15.1%. Total sales increase by 2.1%, similar to what we find in our main

estimates. The effects on losses per sale and total losses are not statistically significant

when dropping the first two years post-adoption (Panel C), which is likely due to statistical

power, but the magnitudes of the coefficients are similar to (or slightly stronger than) the

baseline estimates in Panel A, and the effect on total sales increases to 3.4% (while remaining

statistically significant at the 10% level).

Taken together, these results suggest that ownership structure may play an important

role in shaping utilities’ incentives to use AMI to improve performance. They also indicate

that our main results may actually understate the potential benefits of smart meters, as they

are attenuated by the inclusion of two sets of utilities (cooperatives and IOUs) for which we

do not document any meaningful effects.

7.2 Alternative Explanations of Ownership Heterogeneity

One interpretation of these results is that ownership structure may impact the incentive

and capacity to invest in the organizational capital required to realize the benefits of AMI.

Although all utilities have incentives to reduce electricity losses, enhance revenue recovery,

and improve reliability, privately-owned utilities may instead distribute the recovered rev-

enue to shareholders rather than making additional investments to improve performance in

the long run. At the same time, other characteristics that differ systematically between

government-owned and privately-owned utilities may contribute to heterogeneity in out-

comes, like pre-treatment losses and utility size. We explore those here and find no evidence

that they drive the heterogeneity in outcomes.

47The coefficients for IOUs and cooperatives generally remain flat (hovering around zero). In the case of
total losses for IOUs, there is a slight increase, if anything, that appears to just be the continuance of the
trend in the pre-treatment years, which is consistent with smart meter adoption having no effect.
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Pre-treatment losses. As shown in Section 5, the effects of AMI on utility performance

were driven by utilities with high pre-treatment electricity losses (i.e., utilities that had the

most to gain). If government-owned utilities systematically have higher losses per sale prior

to AMI adoption relative to IOUs and cooperatives, poor initial performance may explain

some of the differences in outcomes across ownership type.

This does not seem to be the case. Average pre-treatment losses per sale were lower for

government-owned utilities (5.3%) relative to both IOUs (7.2%) and cooperatives (6.5%).

Furthermore, we estimate the effects separately for government-owned and non-government-

owned utilities when only including utilities with “high” pre-treatment losses and find that

the effects are still driven entirely by government-owned utilities (see Table 8).48 We define

“high” pre-treatment losses per sale in this case as utilities with losses per sale in the top

quartile of the government-owned pre-treatment sample distribution (6.5%).49

Utility size. Another factor could be utility size, as the time it takes to fully deploy smart

meters scales with the number of customers, and the effects on performance increase with

treatment intensity and time. IOUs are much larger than government-owned utilities, with

the median number of customers in pre-treatment years for utilities in our sample being

366,485 for IOUs and only 5,939 for government-owned utilities. Cooperatives are closer

to government-owned utilities in terms of number of customers but still larger (13,935 in

pre-treatment years).

We explore this by examining heterogeneity in outcomes by utility size and owner-

ship groups. We group cooperatives and IOUs together as “privately-owned” for statistical

power purposes (and also because we find no effects on either group). Although not many

government-owned utilities are large enough to be comparable with privately-owned utilities,

there is a sufficient sub-sample of privately-owned utilities that are small enough to be com-

parable with government-owned utilities. If the overall effects on privately-owned utilities

are only attenuated because of utility size, then we should find that performance improves

48We combine cooperatives and IOUs in this exercise due to the small sample size of IOUs.
49We use the government-owned distribution’s top quartile cutoff for defining “high” in both samples so

that the cutoff point is the same. The 75th percentile of the pre-treatment losses per sale distribution for
non-government-owned utilities is 8%, and while we do not present these results in the table, there are no
effects when using this cutoff either.
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for these small privately-owned utilities.

To test this, we omit utilities with more than 43,177 customers in their pre-treatment

years on average, which is the cutoff for dropping the top 5% of the government-owned

utility size distribution. It also represents much smaller privately-owned utilities relative to

their own size distribution.50 The event study plots are provided in Appendix Figure B4.

Results for government-owned utilities are in the left column and those for non-government-

owned are in the right column. Despite the utilities being similar sizes (and small) in each

sample, the effects of AMI on losses per sale, total losses, and total sales are still only among

government-owned utilities. We conduct the same exercise when including utilities that are

even smaller—those with fewer than 27,520 customers on average in their pre-treatment

years (i.e., the cutoff for the top 10% of the government-owned utility size distribution) and

find the same patterns (see Appendix Figure B5).

Adoption timing. A final potential driver of heterogeneous effects across ownership struc-

ture is adoption timing. The estimated effects may be larger for utilities that adopted earlier

in our sample simply because we observe them for more years post-treatment, as some ef-

fects increase as utilities learn to leverage the capabilities (shown earlier). Alternatively,

since technologies tend to advance over time, the effects for later adopters may be higher

if later versions of AMI provide additional features that can further improve performance.

Although our empirical strategy addresses the endogeneity of adoption timing overall, dif-

ferences in effects across ownership type may still arise if adoption timing also varies across

ownership type.

Notably, we omitted the earliest adopters of all ownership types throughout the entire

paper so far by excluding utilities that adopted prior to 2010. This helps alleviate potential

concerns associated with very early adopters differing from late adopters. Furthermore,

though, the adoption timing is similar across ownership type. The median year of adoption

is 2014 for government-owned utilities and 2013 for privately-owned utilities.

50This approach of using the government-owned utility distribution to determine the cutoff for both sub-
samples allows us to estimate the effects for comparably-sized utilities, as trimming based on the distribution
for non-government-owned utilities would result in still estimating the effects only for very large utilities.
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8 Conclusion

Digitalization is increasingly promoted as a solution for improving firm performance. Yet the

potential for enhancing public service provider performance has been unclear to date. This

paper examines the impact of digitalization on utility performance and quality of service

in the U.S. electricity sector, which provides a unique setting in which adoption of digital

technologies is relatively widespread and objective performance and service quality measures

are reported consistently. We found that, on average, electricity losses per sale decrease

by 3.6%. The effects are much larger for utilities with high pre-treatment losses. Findings

from additional analyses suggest that energy management improvements—such as automated

billing processes and enhanced system monitoring capabilities—are at play.

These effects are driven entirely by government-owned utilities rather than investor-

owned utilities or cooperatives. Differences in other observable characteristics do not account

for the heterogeneity. Therefore it is likely that the diverging managerial incentives across

ownership types account for this heterogeneity.

The impacts of AMI on electricity reliability are mixed. Power outage duration de-

creased, signalling that utilities use the information from AMI to identify and respond to

interruptions more quickly. Yet, the frequency of outages does not change as a result of AMI

deployment. This suggests that improvements in energy management that come with AMI

are insufficient to prevent outages from occurring.

The findings in this paper are important and timely for policy. Electricity infrastruc-

ture in the U.S. and many other countries is aging, making the grid increasing vulnerable to

extreme weather events. At the same time, extreme weather events are occurring with in-

creasing frequency due to climate change. Governments globally are allocating large amounts

of public expenditures to modernizing infrastructure in hopes of adapting and preparing for

climate change, but research on whether these investments deliver on their promise is scant.

Taken together, our findings suggest that digitalization can be a tool for improving public

services, but the benefits may hinge upon organizational capital and incentives.
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Table 1: Summary Statistics of Key Variables (Baseline Estimation Sample)

Full AMI Adopters Non-Adopters Difference
Sample Pre-Adoption Years All Years of Means
(1) (2) (3) (4)

Losses per Sale (%) 0.057 0.056 0.060 0.004
(0.031) (0.028) (0.034) (0.001)

Total Losses (000s MWh) 65.81 83.22 37.77 45.4
(275.57) (340.94) (132.51) (4.68)

Total Sales (000s MWh) 1160 1436 687 749
(4285) (5098) (2524) (74.02)

Total Revenue (million $) 119.6 139.8 68.2 71.6
(498.4) (569.2) (240.6) (7.95)

Number of Customers (000s) 57.05 62.44 33.75 28.69
(258.14) (271.18) (127.60) (3.88)

Sales per Customer (MWh) 31.00 27.01 36.41 -9.40
(140.57) (17.15) (206.59) (3.18)

Rev. per Customer (000s $) 2.88 2.43 3.33 -0.90
(11.95) (1.12) (17.58) (0.270)

Average Prices ($/kWh) 0.102 0.097 0.102 -0.005
(0.034) (0.028) (0.040) (0.001)

Observations 14,241 4,241 6,535 10,776
Number of Utilities 1,303 704 599 1,303

Notes: Table provides summary statistics of key variables used in the U.S.-level analysis for the full base-
line regression sample (Column 1), AMI adopters in their pre-adoption years (Column 2), and non-adopters
(Column 3). The differences of the means for adopters in pre-adoption years and non-adopters are in Col-
umn 4. Standard errors are in parentheses. Data are from the Energy Information Administration for the
years 2007 through 2017. The sub-sample of AMI adopting utilities includes those that adopted between
2010 through 2016.
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Table 2: Effect of Smart Meter Roll-outs on Electricity Losses and Sales

Dependent Variable: Losses per Sale log(Total Losses) log(Total Sales)
(1) (2) (3)

Panel A: Average Effects Over Full Sample Period

PostAMI -0.002** -0.059** 0.012**
(0.001) (0.026) (0.005)

Observations 14,241 14,241 14,241
Effect as % Change -3.6% -5.9% 1.2%

Panel B: Intensity of Treatment Effects

Prop. AMI -0.003*** -0.049** 0.025***
(0.001) (0.020) (0.006)

Observations 14,241 14,241 14,241
Effect as % Change -5.4% -4.9% 2.5%

Panel C: Average Effects 3+ Years Post-Treatment

PostAMI -0.003** -0.076* 0.024**
(0.002) (0.044) (0.010)

Observations 12,255 12,255 12,255
Effect as % Change -5.4% -7.6% 2.4%

Mean of DV (Pre-Treatment) 0.056 83.22 1,436
Utility FEs x x x
State-Year FEs x x x
Local Market Controls x x x

Notes: Table presents the main results for the effects of smart meter roll-outs on electricity losses per
sale (Column 1), (log) total losses (Column 2), and (log) total sales (Column 3). Panel A presents
our baseline main findings when using the full sample and estimating the 2SLS difference-in-differences
model of Equation 2. In Panel B, we estimate the treatment intensity effects (the proportion of meters
that are AMI meters). In Panel C, we estimate the average effect using the baseline sample but omit
the year of adoption and the two years that follow for AMI adopters. Local market controls include
(log) population and the inverse hyperbolic sine of new construction building within counties that the
utility serves. For all regressions, we implement the 2SLS estimator using one lead of the AMI treat-
ment variable to instrument for the covariate log(population). The coefficient on the treatment lead
in the first stage is 0.007 and statistically significant at the 10% level in Panels A and B and 0.008
without statistical significance in Panel C. The mean values of dependent variables are provided in lev-
els (000s MWh) and are calculated using only observations for AMI adopters in pre-treatment years.
Standard errors are clustered at the utility level. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table 3: Heterogeneity in Main Effects by Pre-Treatment Losses per Sale

Dep. Var.: Losses/Sale log(Total Losses) log(Total Sales)
(1) (2) (3)

Panel A: Top Quartile of Pre-Treatment Losses per Sale

PostAMI -0.007*** -0.079*** 0.030**
(0.002) (0.025) (0.012)

Observations 3,234 3,234 3,234
Mean of DV (Pre-Treatment) 0.091 118,978 1,273

Panel B: Bottom Quartile of Pre-Treatment Losses per Sale

PostAMI 0.001 -0.025 0.003
(0.002) (0.097) (0.013)

Observations 2,531 2,531 2,531
Mean of DV (Pre-Treatment) 0.029 40.01 1,313

Utility FEs x x x
State-Year FEs x x x
Local Market Controls x x x

Notes: Table presents estimates for the AMI treatment effect on losses per sale (Column 1), (logged) total
losses (Column 2), and (logged) total sales (Column 3) when splitting the sample based on pre-treatment
losses per sale (i.e., using observations for pre-AMI years for AMI adopters and all observations for non-
adopters). Panel A includes those in the top quartile (losses per sale exceeding 7.3%) and Panel B includes
those in the bottom quartile (losses per sale below 3.8%). Standard errors are clustered by utility. Aster-
isks denote *p <0.10, **p <0.05, ***p <0.01.
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Table 4: New Product Offerings and Utility Competitiveness

Dependent Variable: Dyn. Dem. # # Sales/ Sales/ Loss/ Loss/
Pricing Resp. Cust. Cust. Cust. Cust. Sale Sale
(1) (2) (3) (4) (5) (6) (7) (8)

PostAMI 0.039** 0.033** -0.003 -0.000 0.020** 0.020*** -0.003** -0.002*
(0.017) (0.015) (0.003) (0.002) (0.009) (0.007) (0.001) (0.001)

PostAMI x DP 0.018** -0.034* 0.001
(0.008) (0.018) (0.002)

DP -0.000 0.013 -0.001
(0.007) (0.016) (0.002)

PostAMI x DR 0.018** -0.053*** -0.000
(0.009) (0.019) (0.001)

DR 0.002 0.024* -0.001
(0.006) (0.013) (0.001)

Observations 14,241 14,241 14,241 14,241 14,241 14,241 14,241 14,241
Mean DV (Pre-Treat) 0.208 0.112 62,442 62,442 3.184 3.184 0.056 0.056

Utility FEs x x x x x x x x
State-Year FEs x x x x x x x x
Local Mkt. Controls x x x x x x x x

Notes: Table presents various sets of results related to utilities’ provision of new products (dynamic pricing and
demand response programs) that smart meters can enable and/or improve. The dependent variables are indicators
for whether utilities offer dynamic pricing or demand response programs in Columns 1-2, (logged) number of cus-
tomers in Columns 3-4, (logged) sales per customer in Columns 5-6, and losses per sale in Columns 7-8. Columns
1-2 present the main AMI treatment effects. In Columns 3-8, we interact the AMI treatment with the dynamic pric-
ing and demand response program indicators. Standard errors are clustered at the utility level. Asterisks denote
*p <0.10, **p <0.05, ***p <0.01.
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Table 5: Reorganization of Workforce Composition

Dep. Var. (log): Number of Employees

(1) (2) (3) (4)

PostAMI × Meter Readers -0.186*** -0.182***
(0.041) (0.041)

PostAMI × Quant Workers 0.074*** 0.068***
(0.019) (0.019)

Observations 100,340 95,642 100,340 97,500

MSA-Occupation FEs x x x x
MSA-Year FEs x x x x
Drop Quant Workers x
Drop Meter Readers x

Notes: Table provides results from estimating effects of AMI on the number of employees in
meter reader (Columns 1-2) and quantitative data analysis-oriented (Columns 3-4) occupations.
Dependent variable is the logarithm of employment by MSA-occupation-year. Standard errors
are clustered by MSA area. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table 6: Effect of Smart Meter Roll-outs on Power Outages in Texas

Dependent Variable (ihs): Outage Duration (SAIDI) Outage Frequency (SAIFI)
(1) (2) (3) (4)

PostAMI -0.054* -0.058* -0.000 -0.013
(0.028) (0.031) (0.013) (0.015)

Observations 61,233 61,233 61,233 61,233
Mean of DV (Pre-Treatment) 91.32 91.32 0.950 0.950

Feeder FEs x x x x
Year FEs x x x x
Local Market Controls x x x x
Utility-Year Trends x x

Notes: Effects of AMI deployment on electricity reliability in Texas using within-utility feeder line-
level data and estimating the baseline model following our 2SLS approach. Dependent variable is the
inverse hyperbolic sine of SAIDI (power outage duration in minutes) in Columns 1-2 and SAIFI (out-
age frequency) in Columns 3-4. Observations are weighted by number of customers per feeder line.
Additional local market controls include new building construction and (log) population with the lead
AMI treatment variable as the excluded instrumental variable. The coefficient of the treatment lead
in the first stage is 0.008 and is statistically significant at the 1% level. Standard errors are clustered
at the feeder line level. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table 7: Financial Implications of Smart Meter Deployment

Dep. Var. (log): Total Revenue Average Prices
Sample: Full Sample High Losses Full Sample High Losses

(1) (2) (3) (4)

Panel A: Average Effects Over Full Sample Period

PostAMI 0.009* 0.041*** -0.003 0.011
(0.005) (0.012) (0.004) (0.007)

Observations 14,241 3,234 14,241 3,234

Panel B: Intensity of Treatment Effects

Prop. AMI 0.019*** 0.055*** -0.006 0.007
(0.006) (0.014) (0.004) (0.008)

Observations 14,241 3,234 14,241 3,234

Panel C: Average Effects 3+ Years Post-Treatment

PostAMI 0.017* 0.065*** -0.006 0.030**
(0.010) (0.024) (0.007) (0.014)

Observations 12,255 2,769 12,255 2,769

Utility FEs x x x x
State-Year FEs x x x x
Local Market Controls x x x x

Notes: Table presents results for the effects of smart meter roll-outs on total revenue (Column 1),
revenue per customer (i.e., bills) (Column 2), and average prices (revenue per sale) (Column 3).
Panel A estimates the average effect for the full baseline sample, Panel B estimates the intensity
of treatment effect (the proportion of customers with AMI meters), and Panel C estimates the
average effect but omits the year of adoption and two years that follow such that the estimates
capture the effects on outcomes 3+ years post-treatment. Local market controls include (log)
population and the inverse hyperbolic sine of new construction building within counties that the
utility serves. For all regressions, we implement the 2SLS estimator using one lead of the AMI
treatment variable to instrument for the covariate log(population). The coefficient on the treat-
ment lead in the first stage is 0.007 and statistically significant at the 10% level. Standard errors
are clustered at the utility level. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table 8: Heterogeneous Effects of AMI Deployment by Ownership for Utilities
with High Pre-Treatment Losses per Sale

Dependent Variable: Loss/Sale log(Total Losses) log(Total Sales)
(1) (2) (3)

Panel A: Government-Owned Utilities

PostAMI -0.010** -0.126** 0.040**
(0.005) (0.057) (0.017)

Mean DV (Pre-Treatment) 0.085 18.37 242.6
Observations 1,650 1,650 1,650

Panel B: Non-Government-Owned Utilities

PostAMI -0.004 -0.024 -0.003
(0.005) (0.196) (0.056)

Mean DV (Pre-Treatment) 0.084 150.4 1,771
Observations 2,829 2,829 2,829

Utility FEs x x x
State-Year FEs x x x
Local Mkt. Controls x x x

Notes: Table presents estimates for the AMI treatment effect separately for government-owned
(Panel A) and non-government-owned (Panel B) utilities when limiting the sample to only include
the top quartile of the government-owned pre-treatment losses per sale distribution (i.e., utilities
with average pre-treatment losses per sale equal to or higher than 6.5%). Dependent variables are
losses per sale (Column 1), (log) total losses (Column 2), and (log) total sales (Column 3). Means
of pre-treatment dependent variables are in levels (with total losses and sales being in 000s). Local
market controls include (log) population and the inverse hyperbolic sine of new construction build-
ing within counties that the utility serves. For all regressions, we implement the 2SLS estimator
using one lead of the AMI treatment variable to instrument for log(population). Standard errors
are clustered at the utility level. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.

54



Main Text Figures
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(a) 2007

(b) 2018

Figure 1: AMI Meter Adoption in 2007 versus 2018

Notes: Maps show how AMI smart meter deployment increased from 2007 (Panel A) to 2018 (Panel B).

Created by authors using data from the Energy Information Administration (Form EIA-861)

56



(a) Losses per Sale (Standard DiD) (b) Losses per Sale (2SLS)

(c) log(Total Electricity Losses) (Standard DiD) (d) log(Total Electricity Losses) (2SLS)

(e) log(Total Electricity Sales) (Standard DiD) (f) log(Total Electricity Sales) (2SLS)

Figure 2: Effects of Smart Meter Roll-outs on Electricity Losses and Sales

Notes: Each figure plots estimates of coefficients βj from Equation 1 and their 95 percent confidence inter-

vals with the year prior to initial AMI adoption (“-1”) as the omitted year. Plots on the left are from OLS

estimations and plots on the right implement the 2SLS estimator using a one year lead of the AMI treat-

ment variable as the excluded instrument for log(population). Baseline fixed effects and controls included.

Standard errors are clustered at the utility level. 57



(a) log(Sales per Customer) (b) log(Number of Customers)

Figure 3: Effect of Smart Meter Roll-outs on Sales per Customer and Number of
Customers

Notes: Each figure plots estimates of coefficients βj from Equation 1 and their 95 percent confidence intervals

with the year prior to initial AMI adoption (“-1”) as the omitted year. Estimates are from implementing

the 2SLS estimator using a one year lead of the AMI treatment variable as the excluded instrument for

log(population). Baseline fixed effects and controls included. Standard errors are clustered at the utility

level.
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(a) Losses per Sale, Gov-Owned (b) log(Total Losses), Gov-Owned (c) log(Total Sales), Gov-Owned

(d) Losses per Sale, Cooperatives (e) log(Total Losses), Cooperatives (f) log(Total Sales), Cooperatives

(g) Losses per Sale, IOUs (h) log(Total Losses), IOUs (i) log(Total Sales), IOUs

Figure 4: Heterogeneous Effects of Smart Meter Deployment on Main Outcomes by
Utility Ownership Type

Notes: Figure provides estimates of AMI deployment on losses per sale, (log) total losses, and (log) total

sales when splitting the sample by ownership type. Each plot provides estimates of coefficients βj from

Equation 1 using the 2SLS estimator approach and 95 percent confidence intervals with the year prior to

initial AMI adoption (“-1”) as the omitted year. Baseline fixed effects and controls included. Standard errors

are clustered at the utility level.

59



4.3

4.35

4.4

4.45

4.5
lo

g(
Em

pl
oy

m
en

t)

-.5 0 .5 1

AMI Meters / Total Customers

(a) Meter Readers

7.45

7.5

7.55

7.6

lo
g(

Em
pl

oy
m

en
t)

-.5 0 .5 1

AMI Meters / Total Customers

(b) Quantitative & Computation

8.22

8.24

8.26

8.28

lo
g(

Em
pl

oy
m

en
t)

-.5 0 .5 1

AMI Meters / Total Customers

(c) Others

Figure 5: Meter Readers, Quant-Related Jobs, and Other Occupations as AMI
Deployment Increases

Notes: Labor data are at the MSA-occupation level and aggregated into bins. The outcome variable on

the vertical axis is the residual of log(Employment) after controlling for MSA fixed effects, population, and

building units.
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A Appendix: Data and Sample Construction

(For Online Publication)

A1 Utility-Level Data

We assemble utility-level information on basic characteristics, operations, sales, and meter
adoption for the period 2007–2018 from the Energy Information Administration (EIA) forms
and S&P Global. We restrict our sample to the contiguous U.S. (not including Alaska,
Hawaii, or other offshore territories).

Basic Characteristics. We use S&P Global, EIA Forms 860 and 861 to construct
detailed data on utility-level basic characteristics, including location, county-level service
territory, ISO, FERC region, regulation status, ownership type (i.e., cooperative, investor-
owned, government agencies, etc.), and electric activities (i.e., generation, transmission, and
distribution).

Advanced Metering. Advanced metering information is derived from Schedule 6
of EIA-861. Since 2007, the data reports the number of electric meters by state, customer
category, and meter type, including automated meter reading (AMR) and advanced metering
infrastructure (AMI). In addition to smart meter adoption, these data also include the
number of customers with the following advanced technology features enabled by the AMI
since 2013: (1) digital access to daily energy usage; (2) home area network (HAN) gateway
that allows the meter to communicate with customer’s devices; (3) direct load control (LC)
that permits remote shutdown or cycle a customer’s electrical equipment on short notice.
We aggregate the data to the utility level and calculate the total number of AMR and AMI
per utility in each year. For any missing values in the number of AMI for certain years, we
impute them using the value from the nearest available year prior to the missing year.

Operations. Operational data comes from EIA-861. We collect utility-level total en-
ergy losses, which measure the amount of electricity lost from transmission and distribution.
We drop the records with negative loss values as these are likely mistakes in EIA’s data
collection and reporting process. EIA-861 also reports detailed sales and revenue informa-
tion, which is decomposed into different parts, including retail sales to ultimate customers
(i.e., electricity sold to customers purchasing electricity for their own use and not for resale),
sales for resale (i.e., electricity sold for resale purposes), delivery customers (i.e., unbundled
customers who purchase electricity from a supplier other than the electric utility that dis-
tributes power to their premises), transmission of electricity, and other electric activities.
For the retail sales to ultimate customers, EIA-861 has information on sales, revenues, and
customer counts by four customer categories, including residential, commercial, industrial,
and transportation.

Dynamic Pricing and Demand Response. EIA-861 contains the number of cus-
tomers enrolled in demand response programs (e.g., energy savings or actual peak savings)
or dynamic pricing programs (e.g., time-of-use pricing or real-time pricing) by utility, state,
customer category, and balancing authority. The information on aggregate customer counts
for all demand response or dynamic pricing programs is available after 2007, but Specific
customer count on a single program is only available after 2013. We therefore calculate
the total number of customers enrolled in any demand response programs or any dynamic
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pricing programs for each utility in a year. For any missing values in the number of enrolled
customers, we impute them using the value from the nearest available year prior to the
missing year. There are also data entry errors in the raw data where the number of enrolled
customers is reported to be zero but the values in adjacent years are positive. For these
cases, we replace the zeros with the non-zero values from the previous year.

Population and Building Construction. We supplement the utility data with mea-
sures on local population and building construction. The population data comes from the
Survey of Epidemiology and End Results (SEER). It has annual population size for each
county by age, race, and sex since 1969. For each year, we create two population measures
based on this data: total population in a county and the size of the population older than 18.
The second measure aims to capture the number of adults but excludes infants or teenagers
who are unlikely to be homeowners. Data on new building units comes from the Building
Permits Survey (BPS) administrated by the U.S. census. It provides annual statistics on the
number and valuation of new privately owned residential housing units authorized by build-
ing permits for each county. From this data, we calculate the new and cumulative building
units for the period 2007–2018. We merge these county-level population and housing data
with electric utility data through their service territory information. Specifically, we sum up
all the population or housing measures for the counties that a utility serves.

Sample Construction. We merge the above utility-level annual data sets based on
EIA-assigned unique utility ID and year. The combined data set at this stage contains
27,009 observations of 2,657 electric utilities. We implement a few additional cleaning steps to
construct the final data set. First, we exclude utilities that do not operate in the distribution
segment of electricity delivery (23,750 observations of 2,089 utilities left). Second, we omit
observations that likely represent data entry errors, such as negative losses or customer
counts (21,368 observations of 1,917 utilities left). Third, for each utility, we calculate the
ratio of year-specific disposition of electricity to its mean disposition and then drop the
observations with such ratio larger than 2 (21,352 observations of 1,917 utilities left). These
observations exhibit a sudden jump in total disposition of electricity and could be mistakes
in data reporting. Fourth, we restrict to utilities that have at least 11 years of non-missing
electricity losses data to maintain a high degree of panel balance (19,897 observations of
1,669 utilities left). Finally, we limit our sample to include only utilities that either adopted
AMI smart meters between the years 2010 through 2016 or did not adopt at all. This allows
us to include at least three years of pre-treatment data and one year of post-treatment data
for all adopters. we also exclude extreme outliers in terms of losses per sale (with values
falling into the top or bottom 1% of the pre-AMI-adoption sample year) or the number of
total customers (with values less than 20). The final data set contains 15,568 observations of
1,305 utilities. We measure the intensity of AMI deployment using the ratio of AMI meters
to the total number of customers. Since one customer might be associated with more than
one meter, this ratio can sometimes larger than 1. For these cases, we reset the ratio to be 1.
In the utility-level analysis, since we construct the instrument using the one-year forward of
the policy variable, the data for 2018 (i.e., the last sample year) are omitted, and therefore
the regression includes 14,241 observations across 1,303 utilities between 2007 and 2017.
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A2 Feeder-Level Reliability in Texas

Feeder line data on service quality comes from the Public Utility Commission of Texas
(PUCT), a state agency regulating electric, water, and telecommunication utilities. Each
year, PUCT requires electric utilities to submit an annual service quality report in accordance
with Substantive Rule §25.81. These reports contain detailed information on service quality
and the total number of customers for each feeder line.

We focus on two international standards for measuring service reliability within an elec-
tricity distribution system: the System Average Interruption Duration Index (SAIDI) and
System Average Interruption Frequency Index (SAIFI). These measures provide standard-
ized methods of electricity service reliability such that services are comparable across utilities
and over time.51 Both of these address interruptions, which are defined as losses of power
delivery to one or more customer. According to the IEEE Guide for Electric Power Distri-
bution Reliability Indices, SAIFI is a measure as to how often the utility’s average customer
experienced a sustained interruption in service (more than 5 minutes) within a given year.
SAIDI measures the number of minutes of sustained interruptions that the utility’s average
customer experiences, with interruption duration being the length of time between the start
of service being interrupted and the time when service delivery is restored.

In the PUCT reports, both SAIDI and SAIFI are calculated by taking the mean of outage
duration and frequency over all customers served by a feeder line in a year. Specifically, for
feeder line i in year t,

Iit =

∑
c∈iXcit

Nit

. (5)

In the above equation,Xcit is the number (for SAIFI) or duration (for SAIDI) of outage events
experienced by customer c served by feeder line i in year t, and Nit is the total number of
customers. A lower SAIDI or SAIFI value means a higher level of service reliability.

Sample Construction. The raw feeder line data contains 104,610 observations of
11,470 feeder lines from 12 utilities during 2007-2020. We implement a few additional pro-
cessing steps to construct the final data. First, we restrict the sample to 2007 – 2016. After
2016, there are mergers and acquisitions among these utilities, since which the identifiers of
feeder lines owned by those utilities have completely changed. Consequently, we are not able
to match those feeder lines with the pre-2016 data. We also exclude two utilities —Cap Rock
and Sharyland —that experienced mergers or acquisitions before 2016. Second, we restrict
to feeder lines that have at least 6 years of non-missing reliability data. Then, we match
this feeder-line-level data with utility-level AMI deployment based on EIA-assigned utility
ID and name. The final data set contains 68,529 observations of 7,294 feeder lines from 10
utilities in Texas.

51The measures are limited to an extent, as they capture interruptions but not other power quality mea-
sures, such as drops and surges in voltage.
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A3 Regional Employment Data

We assemble a dataset on occupation-level employment in each Metropolitan (MSA) and
nonmetropolitan (non-MSA) area using the information from the Occupational Employment
and Wage Statistics (OEWS) provided by the U.S. Bureau of Labor Statistics (BLS). It
provides annual information on the number of total employment for each occupation category
in each area, dating back to 1997. This area-level data, however, does not provide industry
decomposition, and hence the employment represents all industries in an area. We retrieve
the area-level employment data for the 2007-2018 period and restrict to the contiguous U.S.

We define an occupation as bill-collection-related labor if it belongs to the following
category (with the corresponding occupation code in parenthesis): Meter Readers, Utili-
ties (43-5041). We then drop other occupations in the same 2-digit category as those bill-
collection-related ones (i.e., 43 - Office and Administrative Support Occupations). This is
to mitigate the concern on spillover effects or occupation substitutions between those bill
collection jobs and other office- or administration-related jobs. Then, the six-digit-level oc-
cupation data is aggregated to the two-digit level. We define jobs related to quantitative
and computation if they belong to the following 2-digit occupation category: Computer and
Mathematical Occupations (15-0000).

Sample Construction. To match this area-level employment data with AMI infor-
mation, we first create county-level AMI adoption by aggregating the utility-level advanced
metering data based on each utility’s service territory. Specifically, for each county and year,
we sum up the number of AMI meters over all the utilities serving that county. Then, we
aggregate the county-level data to the area-level using the MSA and non-MSA area defini-
tions provided by BLS.52 For the counties that are matched with more than one area, we
evenly divide the number of AMI meters in those counties before doing the aggregation. The
combined data set contains 140,760 observations of 22 two-digit occupation categories in 642
MSA or non-MSA areas. We made two additional steps for the data cleaning. First, we
omit the observations with a positive average wage but zero number of employment, which
are likely to be data reporting errors. Second, we exclude areas that never had any bill-
collection-related labor throughout the sample period. The final data set contains 100,848
observations of 22 two-digit occupation categories in 434 areas.

52BLS provides a mapping between each county and the corresponding MSA or non-MSA area. The data
is available here: https://www.bls.gov/oes/2020/may/msa_def.htm.
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B Appendix: Additional Tables

(For Online Publication)

Table B1: OLS Estimates of the Effect of Smart Meters on Electricity Losses and
Electricity Sales

Dep. Var.: Losses per Sale log(Total Losses) log(Total Sales)
(1) (2) (3)

PostAMI -0.001 -0.018 0.007
(0.001) (0.016) (0.006)

Observations 15,544 15,544 15,544
Mean of DV (Pre-Treatment) 0.056 83.22 1,436

Utility FEs x x x
State-Year FEs x x x
Local Market Controls x x x

Notes: Table presents the main results for the effects of smart meter roll-outs on electricity losses per
sale (Column 1), (log) total losses (Column 2), and (log) total sales (Column 3) when using OLS to es-
timate Equation 2. The means of the dependent variables are in levels (000s MWh in Columns 2 and 3)
and are calculated using only observations for AMI adopters in pre-treatment years. Additional controls
include log(population) and the inverse hyperbolic sine of new building construction within counties that
the utility serves. Standard errors are in parentheses and clustered at the utility level. Asterisks denote
*p <0.10, **p <0.05, ***p <0.01.
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Table B2: Implementing Doubly-Robust Stacked Diff-in-Diff Approach
(Full Sample)

Dep. Var.: Losses per Sale log(Total Losses) log(Total Sales)
(1) (2) (3)

Panel A: Only Never Treated in Control

PostAMI -0.002* -0.040* 0.006
(0.001) (0.022) (0.006)

Panel B: Not Yet Treated Also in Control

PostAMI -0.002* -0.039* 0.007
(0.001) (0.022) (0.006)

Utility FEs x x x
State-Year FEs x x x
Controls x x x

Notes: Regression results from implementing the“stacked” doubly robust DiD method of
Sant’Anna and Zhao (2020) based on stabilized inverse probability weighting and OLS.
Only utilities that are never treated are included in the control group in Panel A and util-
ities that are not yet treated are added to the control group in Panel B. Standard errors
are clustered at the utility level. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table B3: Implementing Doubly-Robust Stacked Diff-in-Diff Approach
(Utilities in Highest Quartile of Pre-Treatment Losses Only)

Dep. Var.: Losses per Sale log(Total Losses) log(Total Sales)
(1) (2) (3)

Panel A: Only Never Treated in Control

PostAMI -0.007*** -0.085** 0.014
(0.003) (0.034) (0.015)

Panel B: Not Yet Treated Also in Control

PostAMI -0.007*** -0.083** 0.012
(0.003) (0.032) (0.015)

Utility FEs x x x
State-Year FEs x x x
Controls x x x

Notes: Regression results from implementing the“stacked” doubly robust DiD method of
Sant’Anna and Zhao (2020) based on stabilized inverse probability weighting and OLS and
when limiting the sample to only those in the top quartile of pre-treatment losses (using
the distribution of pre-treatment losses for AMI adopters to determine the cutoff). Only
utilities that are never treated are included in the control group in Panel A and utilities
that are not yet treated are added to the control group in Panel B. Standard errors are
clustered at the utility level. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table B4: Investigating Whether Spillovers Bias the Results

Dependent Variable: Losses/Sale Losses Sales Imports Exports
(1) (2) (3) (4) (5)

PostAMI -0.002** -0.059** 0.012** -0.027 -0.079
(0.001) (0.027) (0.005) (0.066) (0.067)

Neighbor Deployed AMI -0.001 -0.015 0.009
(0.001) (0.036) (0.009)

Observations 14,241 14,241 14,241 14,241 14,241
Mean Dep. Var. 0.057 9.523 12.529 0.423 0.409

Utility FEs x x x x x
State-Year FEs x x x x x
Local Market Controls x x x x x

Notes: Table provides results from tests exploring whether SUTVA might be violated. The depen-
dent variables in Columns 1 through 5 are losses per sale, (logged) total losses, (logged) total sales,
(ihs) imported electricity from neighboring utilities, and (ihs) exported electricity to neighboring
utilities. Neighboring utilities are defined as those serving the same county. All specifications are es-
timated using our baseline 2SLS procedure. Local market controls are (ihs) new construction build
and (log) population, and a one-year treatment variable lead is used as the excluded instrument
for (log) population. Standard errors are clustered at the utility level. Asterisks denote *p <0.10,
**p <0.05, ***p <0.01.
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Table B5: Effect of Smart Meters on Sales per Customer and Number of
Customers

Dependent Variable (log): Sales per Customer Number of Customers
(1) (2)

Panel A: Average Effects Over Full Sample Period

PostAMI 0.008 0.004
(0.006) (0.003)

Observations 14,241 14,241

Panel B: Intensity of Treatment Effects

Prop. AMI 0.021*** 0.004
(0.006) (0.003)

Observations 14,241 14,241

Panel C: Average Effects 3+ Years Post-Treatment

PostAMI 0.013 0.011*
(0.010) (0.006)

Observations 12,255 12,255

Utility FEs x x
State-Year FEs x x
Local Market Controls x x

Notes: Table presents estimated effects of smart meter roll-outs on (log) electricity sales per
customer in Column 1 and (log) total number of customers in Column 2 when using the 2SLS
estimator. Panel A provides estimates from when including the full baseline sample. Panel B
provides estimates of the proportion of meters that are smart meters. Panel C provides findings
from when excluding the year of adoption and two years that follow such that the estimates
capture the effects on outcomes 3+ years post-treatment. Local market controls include (log)
population and the inverse hyperbolic sine of new construction building within counties that
the utility serves. For all regressions, we implement the 2SLS estimator using one lead of the
AMI treatment variable to instrument for the covariate log(population). The coefficient on the
treatment lead in the first stage is 0.007 and statistically significant at the 10% level in both
Panels A and B. Standard errors are clustered at the utility level. Asterisks denote *p <0.10,
**p <0.05, ***p <0.01.
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Table B6: Additional Results for the Effects of Smart Meters on Utilities’
Provision of Innovative Services

Dependent Variable: Dynamic Pricing Demand Response
(1) (2)

Panel A: Intensity of Treatment Effects

Prop. AMI 0.047*** 0.049***
(0.016) (0.016)

Observations 14,241 14,241

Panel B: Average Effects 3+ Years Post-Treatment

PostAMI 0.070** 0.065**
(0.031) (0.032)

Observations 12,255 12,255

Mean of DV (Pre-Treatment) 0.208 0.112
Utility FEs x x
State-Year FEs x x
Local Market Controls x x

Notes: Table presents effects of smart meter adoption on utilities’ provision of innovative
services that aim to incentivize consumer behavior change. Dependent variables are indica-
tors for whether utilities offer dynamic pricing (Column 1) and demand response (Column
2). The main effects prior to estimating the intensity of treatment and timing results are in
Columns 1 and 2 of Table 4. Standard errors are clustered at the utility level. Asterisks de-
note *p <0.10, **p <0.05, ***p <0.01.
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Table B7: Utility Reorganization of Workers – Restricted Sample

Dep. Var. (log): Number of Employment

(1) (2) (3) (4)

Panel A: Exclude MSAs that adopted AMI before 2008 or after 2017

PostAMI × Billing -0.186*** -0.182***
(0.041) (0.041)

PostAMI × Quant 0.070*** 0.065***
(0.019) (0.019)

Observations 56,763 54,102 56,763 55,162

Panel B: Exclude MSAs that adopted AMI before 2009 or after 2017

PostAMI × Billing -0.189*** -0.187***
(0.058) (0.058)

PostAMI × Quant 0.043* 0.037
(0.025) (0.025)

Observations 32,951 31,410 32,951 31,986

MSA-Occupation FEs x x x x
MSA-Year FEs x x x x
Drop Quants x
Drop Meter Readers x

Notes: Table provides results from estimating effects on the number of employment. De-
pendent variable is the logarithm of employment by MSA-occupation-year. Standard errors
are clustered by MSA area. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table B8: Effect of Smart Meter Roll-outs on Power Outages in Texas (Intensity of
Treatment Estimates)

Dependent Variable (ihs): Outage Duration (SAIDI) Outage Frequency (SAIFI)
(1) (2) (3) (4)

Prop. AMI -0.823*** -1.843*** -0.273*** -0.552**
(0.200) (0.587) (0.085) (0.241)

Observations 61,233 61,233 61,233 61,233
Mean of DV (Pre-Treatment) 91.32 91.32 0.950 0.950

Feeder FEs x x x x
Year FEs x x x x
Local Market Controls x x x x
Utility-Year Trends x x

Notes: Effects of smart meter roll-outs based on treatment intensity (i.e., proportion of customers with
smart meters) on electricity reliability in Texas using the 2SLS approach. Dependent variable is the in-
verse hyperbolic sine of SAIDI (power outage duration in minutes) in Columns 1-2 and SAIFI (outage
frequency) in Columns 3-4. Data are at the feeder line level. Observations are weighted by number of
customers per feeder line. Additional local market controls include new building construction and (log)
population with the lead AMI treatment intensity variable as the excluded instrumental variable. The
coefficient of the treatment lead in the first stage is 0.036 and statistically significant at the 1% level.
Standard errors are clustered at the feeder line level. Asterisks denote *p <0.10, **p <0.05, ***p <0.01.
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Table B9: Summary Statistics of Key Variables by Utility Ownership Type

All Utilities Adopters Pre-AMI Non-Adopters
Gov Non-Gov Gov Non-Gov Gov Non-Gov
(1) (2) (3) (4) (5) (6)

Losses per Sale (%) 0.052 0.063 0.048 0.064 0.056 0.068
(0.032) (0.028) (0.028) (0.026) (0.033) (0.035)

Total Losses (000s MWh) 22.61 116.64 29.30 131.52 13.01 88.38
(90.16) (388.52) (95.93) (455.24) (22.01) (220.58)

Total Sales (000s MWh) 477 1964 635 2153 273 1533
(1415) (6035) (1679) (6757) (473) (4228)

Total Revenue (million $) 46.0 206.2 57.3 213.7 25.1 156.2
(169.8) (702.1) (180.3) (757.4) (43.0) (401.1)

Number of Customers (000s) 17.91 103.10 22.51 98.21 10.34 81.61
(60.74) (369.85) (66.56) (364.38) (21.38) (212.67)

Sales per Customer (MWh) 36.72 24.27 29.90 24.42 42.26 24.44
(190.15) (19.65) (13.13) (19.72) (251.47) (21.59)

Rev. per Customer (000s $) 3.32 2.37 2.63 2.26 3.79 2.39
(16.19) (1.35) (0.94) (1.23) (21.42) (1.52)

Average Prices ($/kWh) 0.097 0.109 0.093 0.101 0.096 0.112
(0.028) (0.040) (0.022) (0.032) (0.031) (0.051)

Observations 7,698 6,543 2,004 2,237 4,388 2,147
No. of Utilities 702 594 302 401 400 193

Notes: Table provides summary statistics of key variables used in the U.S.-level analysis for the full
baseline regression sample split by ownership type (government-owned vs. non-government, which in-
cludes investor-owned utilities and cooperatives). Standard errors are in parentheses. Data are from
the Energy Information Administration for the years 2007 through 2017. The sub-sample of AMI
adopting utilities includes those that adopted between 2010 through 2016.
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Table B10: Effect of Smart Meter Roll-outs on Electricity Losses and Sales for
Government-Owned Utilities

Dependent Variable: Losses per Sale log(Total Losses) log(Total Sales)
(1) (2) (3)

Panel A: Average Effects Over Full Sample Period

PostAMI -0.003 -0.105 0.017
(0.003) (0.068) (0.011)

Observations 7,653 7,653 7,653

Panel B: Intensity of Treatment Effects

Prop. AMI -0.006*** -0.151** 0.021*
(0.002) (0.059) (0.011)

Observations 7,653 7,653 7,653

Panel C: Average Effects 3+ Years Post-Treatment

PostAMI -0.004 -0.146 0.034*
(0.004) (0.109) (0.020)

Observations 6,815 6,815 6,815

Mean of DV (Pre-Treatment) 0.048 29.25 635.2
Utility FEs x x x
State-Year FEs x x x
Local Market Controls x x x

Notes: Table presents estimated effects of smart meter roll-outs on electricity losses per customer in
Column 1, (log) total losses, and (log) total sales when using the 2SLS estimator and restricting the
sample to government-owned utilities only. The means of the dependent variables are in levels of MWh
(and in Columns 2 and 3, they are in 000s). Panel A provides estimates from when including the full
baseline sample, Panel B provides results from when estimating the effect of intensity of treatment
(defined as the proportion of customers with AMI meters), and Panel C provides findings from when
excluding the year of adoption and two years that follow such that the estimates capture the effects
on outcomes 3+ years post-treatment. Local market controls include (log) population and the inverse
hyperbolic sine of new construction building within counties that the utility serves. For all regressions,
we implement the 2SLS estimator using one lead of the AMI treatment variable to instrument for the
covariate log(population). Standard errors are clustered at the utility level. Asterisks denote *p <0.10,
**p <0.05, ***p <0.01.
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Table B11: Effect of Smart Meter Roll-outs by Utility Ownership and Incumbent Technology

Ownership: Government-Owned Utilities Non-Government Utilities

Pre-AMI Tech.: Previous Upgrades No Previous Upgrades Previous Upgrades No Previous Upgrades

Dep. Var.: Loss/ log(Tot. log(Tot. Loss/ log(Tot. log(Tot. Loss/ log(Tot. log(Tot. Loss/ log(Tot. log(Tot.
Sale Losses) Sales) Sale Losses) Sales) Sale Losses) Sales) Sale Losses) Sales)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A: Average Effects Over Full Sample Period

PostAMI -0.007 -0.226** 0.034* 0.004 0.090 -0.007 -0.000 0.005 -0.013 -0.005 -0.118 -0.008
(0.005) (0.106) (0.020) (0.007) (0.183) (0.023) (0.001) (0.053) (0.027) (0.009) (0.203) (0.042)

Observations 4,648 4,648 4,648 2,874 2,874 2,874 4,777 4,777 4,777 1,645 1,645 1,645

Panel B: Intensity of Treatment Effects

Prop.
AMI

-0.009*** -0.320*** 0.044** 0.003 0.137 0.004 0.001 -0.060 0.132 0.003 -0.113 -0.014

(0.003) (0.106) (0.020) (0.009) (0.231) (0.019) (0.011) (0.403) (0.548) (0.016) (0.374) (0.107)
Observations 4,648 4,648 4,648 2,874 2,874 2,874 4,777 4,777 4,777 1,645 1,645 1,645

Panel C: Average Effects 3+ Years Post-Treatment

PostAMI -0.014* -0.387* 0.064* 0.006 0.148 -0.005 0.000 0.010 -0.035 0.120 2.156 0.151
(0.008) (0.206) (0.037) (0.012) (0.297) (0.036) (0.004) (0.162) (0.103) (3.815) (69.687) (4.689)

Observations 4,212 4,212 4,212 2,475 2,475 2,475 3,998 3,998 3,998 1,243 1,243 1,243

Notes: Table presents estimated effects of smart meter roll-outs on electricity losses per sale, (log) total losses, and (log) total sales. Estimates for government-
owned utilities are in Columns 1-6 and non-government utilities in Columns 7-12. The sample is limited to utilities that had AMR meters prior to AMI
deployment in Columns 1-3 and 7-9 and those that did not in Columns 4-6 and 10-12. Panel A estimates the average effect for the full baseline sample, Panel
B estimates the intensity of treatment effect (the proportion of customers with AMI meters), and Panel C estimates the average effect but omits the year of
adoption and two years that follow. All regressions include utility and state-year fixed effects and local market controls, which include (log) population and
the inverse hyperbolic sine of new construction building within counties that the utility serves. For all regressions, we implement the 2SLS estimator using
one lead of the AMI treatment variable to instrument for the covariate log(population). Standard errors are clustered at the utility level. Asterisks denote
*p <0.10, **p <0.05, ***p <0.01.
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C Appendix: Additional Figures

(For Online Publication)

Figure B1: Dynamics of (Log) Population Around the First Year of Smart Meter
Deployment

Notes: Figure plots estimates of coefficients βj from Equation 1 using (log) population as the dependent

variable with the year prior to initial AMI adoption (“-1”) as the omitted year. Baseline fixed effects and

controls included (besides population). Standard errors are clustered at the utility level.
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(a) Effects on Losses per Sale, Bottom Quartile (b) Effects on Losses per Sale, Top Quartile

(c) log(Total Electricity Losses), Bottom Quartile (d) log(Total Electricity Losses), Top Quartile

(e) log(Total Electricity Sales), Bottom Quartile (f) log(Total Electricity Sales), Top Quartile

Figure B2: Heterogeneous Effects of Smart Meter Roll-Outs on Main Outcomes by
Pre-Treatment Losses per Sale

Notes: Each figure plots estimates of coefficients βj from Equation 1 and their 95 percent confidence intervals

with the year prior to initial AMI adoption (“-1”) as the omitted year. Sample is limited to bottom quartile

of losses per sale distribution in untreated years on the left side and top quartile on the right side. Estimates

are from implementing the 2SLS estimator using a one year lead of the AMI treatment variable as the

excluded instrument for log(population). Baseline fixed effects and controls included. Standard errors are

clustered at the utility level.
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(a) Total Revenue (b) Revenue per Customer

(c) Average Prices

Figure B3: Effects of Smart Meter Roll-outs on Revenue and Prices

Notes: Figure provides estimated effects of AMI adoption on total revenue (Panel A), revenue per customer

(Panel B), and average prices (Panel C) (all dependent variables are in logs). Each figure plots estimates of

coefficients βj from Equation 1 and their 95 percent confidence intervals with the year prior to initial AMI

adoption (“-1”) as the omitted year. Estimates are from implementing the 2SLS estimator using a one year

lead of the AMI treatment variable as the excluded instrument for log(population). Baseline fixed effects

and controls included. Standard errors are clustered at the utility level.
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(a) Losses per Sale (Gov-Owned) (b) Losses per Sale (Non-Gov)

(c) log(Total Losses) (Gov-Owned) (d) log(Total Losses) (Non-Gov)

(e) log(Total Sales) (Gov-Owned) (f) log(Total Sales) (Non-Gov)

Figure B4: Effects of Smart Meter Roll-outs for “Smaller” Utilities by Ownership Type
(Dropping Largest 5% According to Government-Owned Distribution)

Notes: Each figure plots estimates of coefficients βj from Equation 1 and their 95 percent confidence intervals

with the year prior to initial AMI adoption (“-1”) as the omitted year when implementing the 2SLS estimator

using a one year lead of the AMI treatment variable as the excluded instrument for log(population). Sub-

samples omit the top 5% of the pre-treatment government-owned utility size by customer count (i.e., sub-

samples include utilities with fewer than 43,177 customers on average in pre-treatment years). Baseline fixed

effects and controls included. Standard errors are clustered at the utility level.
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(a) Losses per Sale (Gov-Owned) (b) Losses per Sale (Non-Gov)

(c) log(Total Losses) (Gov-Owned) (d) log(Total Losses) (Non-Gov)

(e) log(Total Sales) (Gov-Owned) (f) log(Total Sales) (Non-Gov)

Figure B5: Effects of Smart Meter Roll-outs for “Smaller” Utilities by Ownership Type
(Dropping Largest 10% According to Government-Owned Distribution)

Notes: Each figure plots estimates of coefficients βj from Equation 1 and their 95 percent confidence intervals

with the year prior to initial AMI adoption (“-1”) as the omitted year when implementing the 2SLS estimator

using a one year lead of the AMI treatment variable as the excluded instrument for log(population). Sub-

samples omit the top 10% of the pre-treatment government-owned utility size by customer count (i.e.,

sub-samples include utilities with fewer than 27,520 customers on average in pre-treatment years). Baseline

fixed effects and controls included. Standard errors are clustered at the utility level.
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