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Abstract

Overloaded electrical systems are a major source of unreliable power. Using a

randomized saturation design, we estimate the impact of compact fluorescent lamps

(CFLs) on electricity reliability and household electricity consumption in the Kyrgyz

Republic. Greater saturation of CFLs within a transformer leads to fewer outages,

a technological externality benefitting all households, regardless of individual adop-

tion. Spillovers in CFL adoption further reduce electricity consumption, contributing

to increased reliability within a transformer. CFLs’ impacts on household electricity

consumption vary according to the effects on reliability. Receiving CFLs significantly

reduces electricity consumption, but increased reliability permits greater consumption

of electricity services.
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1 Introduction

Electricity reliability is a major concern in achieving economic benefits from grid connections

(Pargal and Banerjee, 2014). When electrical grids are asked to deliver more power than

system constraints allow – limited by either technical capacity or persistent power shortages

– outages can result (Lawton et al., 2003; Sullivan et al., 2009; Singh and Singh, 2010; Samad

and Zhang, 2016).

Energy efficient technologies are frequently deployed via government programs with the spe-

cific goals of reducing peak demand (Osborn and Kawann, 2001; Gillingham, Newell and

Palmer, 2006) and increasing reliability of electricity supply (World Bank, 2006). These

technologies are expected to deliver important electricity savings without requiring adopters

to decrease their electricity services consumed (DOE, 2009). Moreover, as electricity savings

reduce the stress on the distribution infrastructure, sufficient saturation of efficient tech-

nologies can induce more reliable electricity supply for all end-users served by the same

infrastructure, regardless of their own adoption of the technologies (Trifunovic et al., 2009).

Whether impacts on electricity reliability are empirically possible is a first order question

that speaks directly to the optimal scale of programs delivering efficient technologies and the

extent to which these programs can accomplish the various goals they are set to deliver. An

improvement in reliability resulting from energy efficiency distribution is a form of a techno-

logical externality.1 Technological externalities are known to govern the take-up and impacts

of other technologies (Miguel and Kremer, 2004; Cohen and Dupas, 2010).2 Similarly, the

1Adoption of a particular technology generates a positive (negative) technological externality if an in-
dividual’s returns to adoption increase (decrease) in the fraction of others adopting the technology (Foster
and Rosenzweig, 2010).

2Cohen and Dupas (2010) identify the following factors that govern technology uptake and impacts: (1)
the elasticity of demand with respect to price, (2) the elasticity of usage with respect to price, (3) the impact
of price variation on the need of the marginal consumer, and (4) the presence of nonlinearities or externalities
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adoption of energy efficient technologies and the benefits from their adoption are likely to

hinge on such externalities.

To test for a technological externality in electricity reliability and assess how it contributes

to electricity consumption and later technology adoption, we implemented an experimental

distribution of compact fluorescent lamps (CFLs) in a district near Bishkek, the capital of

the Kyrgyz Republic. CFLs are engineered to consume 75 percent less electricity per lu-

men relative to traditional incandescent bulbs (DOE, 2009). Efficient lighting technologies,

such as CFLs, are a relatively accessible option for end-users and a popular choice of en-

ergy efficiency programs.3 They are also particularly pertinent for reducing peak demand in

developing countries, where lighting comprises up to 86 percent of electricity consumption

(Mills, 2002) and consumption of lighting services typically occurs at peak times.

Designed to alleviate a constraint within the electricity distribution system that causes elec-

tricity outages – transformer overloads – we distribute CFLs to reduce peak loads and in-

duce a technological externality. Transformers convert high-voltage electricity to usable,

low-voltage electricity for household consumption. Each transformer can transfer a certain

maximum electricity load at any given time and exceeding that load may cause transformer

breakage, resulting in outage (Glover, Sarma and Overbye, 2011).4 Local distribution trans-

formers in the Kyrgyz Republic are regularly operating at a load factor that substantially

in the production function. Their experiment focused on factors 1 through 3, and assume three levels of
externality in calculations of cost-effectiveness of a price subsidy. We directly test for the fourth factor.

3Between 1990 and the mid-2000s, the World Bank alone committed more than US$11 billion to energy
efficiency in developing countries. Examples of projects distributing CFLs to reduce peak load and increase
service reliability (amongst other goals) include: 800,000 CFLs in Uganda to reduce peak load by 30 MW;
400,000 CFLs in Rwanda to reduce peak load by 16 MW; 1 million CFLs in Vietnam to reduce peak load by
33 MW; 600,000 CFLs in Sri Lanka to reduce peak load by 34 MW; and 2.7 million CFLs in South Africa
to reduce peak load by 90 MW (World Bank, 2006; Sarkar and Sadeque, 2010).

4This is not unique to our setting. For example, as peak electricity loads increase in India, utilities are
reporting increasing numbers of transformer overloads and resulting outages (Parashar, 2017; Dabas, 2019).
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exceeds the optimal, making them close to overload (Amankulova, 2006). Given transformer

failure is a non-linear function of load, peak reductions of overloaded transformers can yield

disproportionately large impacts on supply reliability (ANSI/IEEE, 1981).

In a novel application of a randomized saturation design (Baird et al., 2018) to the domain

of energy efficiency, we randomly assign treatment status in two stages. First, we randomize

transformers to control, low or high CFL treatment saturations, with approximately 10 to

14 (15 to 18) percent of all households within low (high) treatment saturation transformers

assigned to treatment.5 Design decisions regarding CFL saturations to induce reliability ef-

fects were informed by a calibration exercise. Second, we randomize households individually

to treatment and control groups, according to the saturation assigned to their transformer

in the first stage. Treated households are given the opportunity to purchase up to four CFLs

at a highly subsidized price. At baseline, households had 6.2 lightbulbs on average, of which

only 0.2 were energy efficient. Treated households received an average of 3.2 CFLs through

this intervention.

We observe three main results. First, households in transformers with a higher CFL satura-

tion report fewer days without electricity due to unplanned outages. We consider this result

positive evidence that energy efficiency programs can reduce peak loads to improve electricity

reliability, if they reach sufficient levels of technology saturation. Analysis of utility’s resi-

dential electricity consumption data collapsed at the transformer level confirms this result.

Second, the impacts of CFL distribution on households’ electricity consumption vary accord-

ing to the CFL saturation within a transformer. In lower saturation transformers, there is a

5We employ electric utility’s data on residential users and the transformers through which they are served.
We sample 20 percent of households in each transformer into the study. Then, we randomize transformers
to saturations of 0, 60 or 80 percent of study households treated, respectively. This results in the 10 to 14
(15 to 18) percent of all households within low (high) saturation transformers being assigned to treatment.
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statistically significant and meaningful reduction in electricity consumption. In higher sat-

uration transformers, reductions in electricity consumption are smaller and not statistically

significant. This result is consistent with potential for greater electricity consumption due to

improved reliability within higher saturation transformers.6 Third, spillovers in CFL take-up

occur among control households. Control households in treated transformers have signifi-

cantly more CFLs than the “pure” control households in control transformers. Adoption

spillovers contribute to greater reductions in electricity consumption within a transformer,

adding to the technological externality in electricity reliability. Although at higher technol-

ogy saturations there are more neighbors to learn from and more reliable electricity services,

we do not find significant differences in adoption spillovers by CFL saturation.

Our study contributes to literatures concerned with technology adoption and technological

externalities. Our experiment employs a recent innovation in experimental design, a multi-

level randomized saturation, to study the role of technological externalities in the domain of

energy efficiency. Multi-level randomized saturation designs are increasingly used by empir-

ical work focused on estimating network, spillover and general equilibrium effects, thereby

addressing their interference in the identification of program impacts (Sinclair and Green,

2012; Banerjee et al., 2014; Crepon et al., 2013; Haushofer et al., 2013; Crepon et al., 2018;

Filmer et al., 2018; Muralidharan, Niehaus and Sukhtankar, 2018). Previous work on technol-

ogy adoption highlighted the importance of technological externalities in technology take-up,

diffusion and subsidization, and in the assessment of program impacts and cost-effectiveness

(Miguel and Kremer, 2004; Cohen and Dupas, 2010; Ashraf, Berry and Shapiro, 2010). Nev-

ertheless, given the scale at which technological externalities typically occur, designing an

6In low saturation transformers, electricity savings are within the expected range from engineering calcu-
lations. The smaller reductions in high saturation transformers are thus not a sign of ineffective technology.
Rebound effects, increased used of electric heating, and strategic outages do not seem to drive the impacts
by transformer saturation.
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experiment that can identify such externalities has been challenging.7 As a result, there has

been relatively little causal empirical evidence on them.8 By implementing a randomized

saturation design at the level of frequent infrastructure failure, we provide evidence of a

technological externality in the form of improved reliability of electricity services. We show

that, due to this externality, the effect of CFL adoption on household energy consumption

is non-monotonic. At a lower saturation, CFLs reduce household electricity consumption;

but at a higher saturation, CFLs allow them to increase their electricity consumption due

to fewer outages. Ignoring this externality would lead to inaccurate calculations of the elec-

tricity savings from the CFLs.

Our study also connects to the literatures on energy efficiency impacts, adoption, and the

energy efficiency gap. The substantial body of work investigating the take-up of energy

efficient technologies has largely focused on private adoption decisions and the returns to

individual adopters (Jaffe and Stavins, 1994; Allcott and Greenstone, 2012; Gillingham and

Palmer, 2014). Although programs deploying efficient lighting are ubiquitous and ostensibly

promising, there is little evidence of their impacts on household electricity consumption.9

Perhaps more notably, adoption spillovers and reliability externality effects of energy effi-

cient technologies have received little attention. Through our CFL distribution we show that

increasing household energy efficiency leads to adoption spillovers and reliability externali-

ties, which affect many more electricity consumers. Accounting for these effects is critical.

7As Miguel and Kremer (2004) acknowledge: “When local treatment externalities are expected, field
experiments can be purposefully designed to estimate externalities by randomizing treatment at various
levels. [...] However, this multi-level design may not be practical in all contexts: for example, in our context
it was not possible to randomize treatment within schools. Randomization at the level of clusters of schools
also dramatically increases the sample size needed for adequate statistical power, raising project cost.”

8Miguel and Kremer (2004) provide experimental evidence of positive cross-school externalities from
deworming medicines in Kenya, but rely on non-experimental methods to decompose the overall effect
on treated schools into a direct effect and within-school externality effect. Cohen and Dupas (2010) use a
randomized two-stage pricing design to estimate the elasticities of demand and usage of bednets with respect
to price, assuming three levels of externality in calculations of price subsidy cost-effectiveness.

9The exception is Iimi et al. (2017), which does not address technological externalities.
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Benefit calculations that incorporate adoption spillovers and improved electricity services are

more than double the calculations based solely on private electricity consumption impacts,

providing an economic rationale for mass deployment of energy efficient technologies.

The remainder of the paper is as follows: Section 2 describes our experiment setting in the

Kyrgyz Republic. Section 3 explains the sampling process, the randomized design, and the

intervention. Section 4 details the data collected and offers randomization checks. Section

5 estimates of the aggregate impacts of CFLs on outages. Section 6 presents analysis of

residential electricity consumption and discusses evidence of technological externalities in

electricity reliability. Section 7 provides analysis on CFL adoption and spillovers in technol-

ogy take-up. Section 8 addresses external validity. Section 9 concludes.

2 Experiment setting

The Kyrgyz Republic provides a suitable context in which to study energy efficiency and

electricity reliability in a developing country setting. Due to its history as part of the former

Soviet Union, this lower-middle income country is highly electrified. Nearly 100 percent of

households are covered by formal electricity connections and the residential sector consumes

63 percent of the country’s electricity supplied. In spite of low residential electricity prices

– $0.02 per kWh throughout this study – energy expenditures comprised an estimated 7.1

percent of total household expenditures (Gassmann, 2014).

Since the country’s 1992 independence, residential electricity demand has rapidly grown,

straining the existing infrastructure.10 In the years prior to our study, most local distribu-

10Kyrgyz households’ growing electricity consumption is consistent with pro-poor economic growth in
developing countries more broadly (Obozov et al., 2013). Much of the existing electricity infrastructure
dates back to the Soviet Union (Zozulinsky, 2007) and was designed for substantially lower demand.
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tion transformers had a load factor between 0.9 and 1.2, which is greater than the optimal

load of 0.7 (Amankulova, 2006). As a result, poor reliability and unplanned outages are fre-

quent (World Bank, 2014), particularly during the winter when residential demand is high

due to electric heating (World Bank, 2017a). Between 2009 and 2012, the utility serving the

study region reported 20 outages per day on average during winter (World Bank, 2017b).11

But frequent outages are politically and economically risky for the government and utility.

No strategic outages or planned rolling blackouts (e.g. from overall electricity supply short-

ages), occurred during the intervention period (per communication with the electric utility,

2013).

In our study setting, a peri-urban district near Bishkek, households are served by formal con-

nections to the electrical grid. Service provision is interconnected within a transformer; when

a transformer has an outage, all households connected to the transformer are without elec-

tricity.12 On average, 54 households receive electricity via a single transformer. Households

are metered individually (i.e., they do not share meters) and receive a monthly electricity

bill based on their meter readings. At baseline, they use an average of 232 kWh per month

in the summer (June to September) and 633 kWh per month – more than double – in the

winter (November to February). Households have an average of 8 electricity-using appliances

and many (39 percent) report heating with electricity.13

Prior to the intervention, study households indicated that they frequently worried about

saving electricity (95 percent) and took measures to do so (86 percent). Nevertheless, very

11Such high rates of outages are not specific to only this particular utility. Between 2009 and 2012, the
country’s distribution companies reported 43 outages on average per day (World Bank, 2017b).

12Only 1 household reported having an electricity generator for purposes such as lighting.
13Almost all homes have a television and refrigerator. Approximately three-quarters have electric stoves,

an iron, and a clothes washing machine. Only 2 percent have air conditioners. Households conserve on
heating. Most households report heating their houses at least sometimes with coal (80 percent), and on
average they heat 3/4 of all their rooms during winter.
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few had CFLs and they had them in small numbers (0.17 CFLs per household, on average).

CFLs were available for purchase only within Bishkek and sold for prices between 100 and

170 Kyrgyz soms, depending on the quality.14 In contrast, incandescent lightbulbs were

available in both rural and urban markets for approximately 15 to 20 Kyrgyz soms. Based

on the lightbulb and electricity prices and typical lightbulb use in our sample, we calculated

the payback period for CFLs to be 1 to 2 years. Although more than half the households

reported knowing about CFLs (56 percent), the majority did not know or believe that CFLs

consume less electricity than incandescent bulbs (70 percent) or that electricity bill savings

can result from bulb replacement (72 percent).

3 Randomized experiment with energy efficiency

3.1 Sampling process

For our sampling procedure, we used electricity utility data on households’ locations and the

transformer through which they were served. Transformers providing at least 5 households

with electricity were eligible, as those serving fewer households likely also served industrial

consumers. Within the study district, we chose seven villages accessible from Bishkek during

the winter months, comprising 248 eligible transformers. We further restricted the sample to

the 124 eligible transformers with below median monthly household electricity consumption

in the year prior to the study.15 Then we randomly sampled 20 percent of households in

each transformer. The number of households per transformer is heterogeneous, resulting in

differences across transformers in the number of households included in the study.

14As a reference, at baseline, household monthly income per capita was on average 76 USD (2.45 USD
per person per day), and the exchange rate was approximately 1 USD = 46 Kyrgyz soms.

15We exclude transformers with above median electricity consumption. In those transformers, households
were consuming more electricity due to heating. Based on our calculation, inducing a reliability effect would
have required a much higher CFL saturation than what we could afford to implement. CFLs were not the
appropriate technology choice to reduce peak load in those transformers.
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3.2 Experimental saturation design

Treatment status was randomly assigned in two stages. In the first stage, the 124 sampled

transformers were randomized into control, and lower and higher treatment saturations. Due

to funding constraints, households in 14 control transformers were not surveyed, resulting in

25, 42, and 43 eligible transformers in control, lower and higher saturation groups, respec-

tively. In lower (higher) saturation transformers 60 (80) percent of study households were

assigned to treatment, which is approximately 10 to 14 (15 to 18) percent of all households

within lower (higher) treatment saturation transformers. In the second stage, households

were randomized into either control or treatment status – 460 and 540 respectively – accord-

ing to the previously-assigned transformer saturations.

Figure 1 shows the experimental design. Treated households are only in treated transformers;

however, control households are in both control and treated transformers. Figure 2 depicts

how the two-stage randomization induced spatial heterogeneity in treated households’ loca-

tions and variation in the proximity to and number of nearby treated neighbors.

3.3 Intervention

In the spring of 2013, households were visited and invited to participate in a baseline survey.

During the informed consent process, all households were informed that the research ad-

dressed CFLs and electricity consumption. Additionally, treated households were told that

they would have the opportunity to purchase CFLs at a subsidized price after the survey.

None of the participants, neither treatment nor control, were told about the variations in

transformer saturations nor did they have reason to know. Moreover, the control households

were not told that other households received subsidized CFLs. Upon completion of the base-
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line survey, all households were given 150 Kyrgyz soms (about 3.26 USD) as compensation.16

Baseline interaction with control households ended at that time.

Households randomly assigned to treatment were offered the opportunity to purchase up to

four 21 W CFLs (rated equivalent to 100 W incandescent bulbs) at a subsidized, randomly-

drawn price, via a willingness to pay experiment.17 The experiment uses the Becker-de

Groot-Marschak (BDM) methodology to elicit demand, following Berry, Fischer and Gui-

teras (2020). The set of possible prices, in Kyrgyz soms, was {0, 5, 10, 15, 20}. At the

time, the lowest market price for CFLs was 100 KGS. The number of CFLs distributed to

each treatment household was recorded. On average, treated households received 3.2 CFLs

via the intervention, paying an average price of 13 KGS per CFL. Of the 540 households

assigned to treatment, 70 chose not to participate in the WTP game and therefore received

zero CFLs. These households are non-compliers. For intent-to-treat estimates, they are

considered treated.

Households were visited one year later, in the spring of 2014, for a follow-up survey. Sur-

vey enumerators made at least four attempts to survey the address. Of the 1,000 original

households, 749 were found at the address visited at baseline. When original households

were no longer living at the address, the new residents were surveyed instead. In total,

838 households (original and new residents) were interviewed for the follow-up survey, and

101 original households were identified as having moved in the year since the intervention.

Either a new resident responded or neighbors informed enumerators that the prior resident

had moved. After the survey, respondents were compensated 150 KGS for their time.

16As of 2011, the average monthly nominal employee wage was 9,352 KGS per month–an estimated 467
KGS per day of work (National Statistical Committee of the Kyrgyz Republic, 2012).

17From the survey piloting exercises in Fall 2012, we knew that 100 W incandescent bulbs were most
common and that households had five to six lightbulbs, almost all of which were incandescent.
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Potential concerns regarding compliance and attrition might include: (i) whether treated

households participated in the CFL treatment, and (ii) whether study households moved

prior to the follow-up survey. We address these issues as follows. First, in our intent-to-treat

estimates, treated households that did not comply with the treatment are considered treated.

Second, we obtain estimates two ways: including all households (movers and non-movers)

and excluding houses with new tenants (just non-movers).18 We also check for differential

attrition by transformer treatment saturation and find no significant difference in attrition

across groups (Appendix Table A1).

4 Data

Baseline and follow-up survey data include information on various household demographics,

lightbulb ownership (type, wattage, etc), lightbulb use (room of use, hours used in a typical

day, etc.), times of peak electricity consumption, perceptions and understanding of the CFL

technology, and GPS location of each residence. Furthermore, households report the number

of days in the prior month during which they did not have electricity due to outages. This

is a proxy for electricity reliability.19

The utility does not collect transformer-specific outage data. With limited funding and

capacity, electric utilities in developing countries often do not systematically document elec-

tricity reliability and outages (Klytchnikova and Lokshin, 2009). Researchers use proxies in

the absence of such data. For example, Fisher-Vanden, Mansur and Wang (2015) and All-

cott, Collard-Wexler and O’Connell (2016)’s research on reliability and firm-level outcomes

18Results are consistent across these analyses.
19According to the utility, transformer outages last between a few hours and a few days. The transformer

repair required and availability of replacement parts determines the outage length.
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use “shortages” or “scarcity.” To corroborate our results based on household’s self-reported

outages, we also use the utility’s data on household electricity consumption.

The electric utility provided data on households’ service transformer and monthly electric-

ity consumption for the period between October 2010 and September 2014, comprising 30

months prior to and 18 months following the intervention. Our analysis ends in September

2014 to avoid conflating the CFL intervention with a tariff reform introduced later in 2014.

In the period examined, electricity prices were constant at 0.02 USD per kWh.

4.1 Randomization balance

Given the two-stage randomization, we perform balance tests at multiple levels. First, bal-

ance tests at the transformer level highlight the lack of systematic differences by treatment

saturation in the baseline demand for CFLs. Table 1 shows balance in the number of CFLs

provided by the intervention, the price households bid, and the price paid for the interven-

tion CFLs. Appendix Table A2 provides additional transformer balance tests and indicates

that transformers are similar along many other dimensions of demographics. There are

three exceptions. Lower saturation transformers have marginally significantly lower house-

hold income and higher pre-intervention winter electricity consumption than control trans-

formers, as well as significantly more households than higher saturation transformers.20 In

transformer-level regressions, we control for these covariates and use transformer fixed effects.

Household-level balance tests further show that treatment and control households are sim-

ilar along most characteristics at baseline (Appendix Table A3). Control households are

marginally more likely to have a household head that has completed secondary school, and

20Since a greater number of households is typically associated with higher electricity consumption, the
direction of this difference should bias our results towards not finding a differential impact on outages.
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significantly more likely to live in single family dwellings. These two differences are jointly

about what could be expected by chance. If anything, these differences would downward

bias our results. Appendix Figure A1 provides an additional balance check, revealing sim-

ilar time trends and seasonal heterogeneity in pre-intervention electricity consumption by

treatment status. Noteworthy, the peaks recorded in both pre-intervention winters (in 2011

and 2012) are not statistically significantly greater among treated than control households.

Our estimations nevertheless will account for seasonal variation in electricity consumption

by including either household-by-season or transformer-by-season fixed effects.

5 Impacts of energy efficiency on electricity reliability

To affect electricity reliability, energy efficiency must do more than reduce average monthly

electricity consumption. Overloads and the resulting outages occur at times of peak elec-

tricity consumption, when distribution transformers are most strained. Thus, the services

associated with the energy efficiency improvement must be consumed at peak times, when

they can help reduce overloads. In our study setting, the electric utility reports times of

daily peak demand to be 6 to 9 am and 6 to 10 pm, which overlaps with times typical for

lighting service consumption and when CFLs could make a difference. Times of peak demand

are corroborated by the study households’ self-reported peak consumption times (Appendix

Figure A2). The months of peak demand are October through April, due to electric heating

and longer hours of lighting.

5.1 Benchmarking impacts on transformer outages

We start by illustrating the potential for energy efficient lightbulbs to lower peak electricity

consumption and reduce transformer outages. We perform benchmarking calculations by

season, informed by household baseline survey and electricity consumption data (Appendix
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A1). Our calculations indicate that replacing 3.2 incandescent lightbulbs (100 W each)

with equivalent CFLs (21 W each) could substantially reduce average household monthly

electricity consumption, saving between 42 kWh per month during the winter and 34 kWh

per month in the spring/fall. This represents a non-trivial percent reduction in household

average monthly electricity bills, of about 7 percent of the 566 kWh winter average and 10

percent of the 340 kWh spring/fall average. Considering peak-to-average load ratios by sea-

son, we calculate household peak load could be reduced by 23 percent in the winter and 25

percent in the spring/fall.21 For a distribution transformer with 20 percent of its households

treated, this represents a 4 to 4.5 percent reduction in peak load. If adoption spillovers

occur, additional reductions in peak load are expected.22

Consulted about the above peak load reductions, the electric utility’s engineers sustained

they would be sufficient to reduce transformer outages. Figure 3 shows that households’

self-reported outage counts at follow-up, differentiated by transformer-level CFL saturation,

supports their assessment.23 The distribution of reported outages among households in

treated transformers is shifted leftward (towards zero outages) in comparison to the graphed

responses of households in the control transformers. This evidence suggests a relationship

between transformer-level CFL saturation and outages, motivating the analysis that follows.

21The peak-to-average load ratios are informed by hourly residential electricity consumption smart meter
data from a nearby but different district (see Appendix A1).

22Section 7 explores adoption spillovers. Benchmarking calculations are redone to account for those.
23Data on reported outages are collected in both the baseline and follow-up surveys in response to the

question: “In the past month, how many days has your household been without electricity, due to problems
with the electrical system in the village?” The question was asked this way to avoid households conflating
distribution system outages with other reasons for which household electricity service might cease (e.g. bill
non-payment). The follow-up survey occurred in March and April 2014, so the months in which we are
measuring days without electricity due to outage include February and March.
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5.2 Estimating the impacts of CFLs on outages

To examine the impact of this CFL intervention on electricity outages, we draw on the

transformer-level randomization. We begin by estimating the following basic specification:

Oig = β1Highig + β2Lowig + β3Xg + εig (1)

where Oig is the number of days without electricity due to unplanned outages in the month

prior to the follow-up survey, as reported by household i in transformer g; Highig and Lowig

indicate if the household is in a higher- or lower-saturation transformer; and Xg is the num-

ber of households within a transformer. In alternative specifications, we further include the

household treatment status, Tig; interactions between the household and transformer treat-

ment status, Ti ∗ Highig and Ti ∗ Lowig; and the latter plus a control for the number of

outages reported at baseline. Standard errors are clustered at the transformer level. We

correct standard errors for multiple hypothesis testing, per List, Shaikh and Xu (2016).

In Table 2, across all specifications, households in both higher and lower saturation trans-

formers report fewer days without electricity, relative to households in control transformers.

The negative number of reported outages is statistically significant only for households in

higher saturation transformers. Higher saturation transformers have more treated house-

holds (by definition). To address concerns that treated households may have an incentive

to report fewer outages, Column 2 controls for household treatment status. Columns 3 and

4 interact household and transformer treatment status, to allow treated households differ-

ential impacts depending on the transformer saturation. Results after allowing for such a

differential response indicate that, if anything, estimates in Columns 1 and 2 may be down-

ward biased. In Columns 3 and 4, the coefficients on high saturation transformers are more

negative (i.e. there are fewer outage days) than those on low saturation transformers and
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the difference between coefficients is statistically significant in these specifications.

Our preferred specification is Column 4 of Table 2, as it both allows for differential impacts

by transformer treatment status and controls for baseline reported number of days without

electricity. These results indicate that households in higher (lower) saturation transformers

report 2.1 (1.1) fewer outage-days in the month prior, relative to the 3.24 days without

electricity reported by households in control transformers. The significant and larger reduc-

tion in outage-days among the higher saturation transformers reflects that the gradient of

treatment saturation, in moving from lower to higher treatment transformers, is sufficient to

improve reliability in our setting, where transformers operate close to capacity.

5.3 Additional evidence on outages

Supporting evidence that the CFLs reduced distribution outages comes from an intra-cluster

correlation analysis of the number of outages reported at follow-up. If saturation within a

transformer reduces outages at the transformer-level, then household reported outages should

be correlated within a transformer. Given different survey dates, responses are not expected

to be perfectly correlated. Our calculation results in an intra-class correlation of 0.56, indi-

cating that responses within transformers are indeed highly correlated.

Providing further support, we check that the estimated reduction in outages is not due to

strategic or planned outages implemented purposefully by the utility. Strategic or planned

outages occur at the level of the electricity feeder line – one level higher than the trans-

former in the electricity distribution system – so we would be concerned if control and

treated transformers were differently distributed across feeder lines. The 110 treated and

control transformers in our study are equally spread across 20 different feeder lines. We

check utility maps and find no clustering of transformer treatment type by feeder line.
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Finally, impacts on transformer-level electricity consumption corroborate the outage impacts

presented earlier (Appendix Table A4). We use a monthly panel of electricity consumption

data for all residential consumers within a transformer, including those not sampled or sur-

veyed (as sampled households are only 20 percent of households within each transformer).24

We collapse these data at the transformer-level. Controlling for transformer fixed effects, we

estimate a substantial and significant reduction in electricity consumption for low saturation

transformers, but no reduction in electricity consumption for high saturation transformers.

6 How does energy efficiency affect reliability?

If differential impacts on outages by transformer treatment saturation occur, monthly house-

hold electricity consumption should be consistent with those differences. To better under-

stand how CFLs’ reliability impacts interact with their impacts on household electricity

consumption, we use the electric utility’s monthly household billing records and exploit the

random variation in treatment at both the transformer and household levels, as induced by

the two-stage randomization.

6.1 Event study of household electricity consumption

We illustrate the intuition of our analysis in an event study-style graph. In Figure 4, we

plot the estimates and 95 percent confidence intervals for the month-by-month impacts of

our CFL intervention on household-level electricity consumption, controlling for baseline

monthly electricity consumption, heating degree days, and days within each billing period.

Alongside, we plot ex ante predicted month-by-month electricity reductions.

24The electricity consumed within the transformer also includes industrial and commercial consumers, for
which we do not have data.
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A number of points are evident. First, a reduction in electricity consumption is observed

for treated households shortly following the intervention. Second, the estimated impacts

are quite noisy in winter months, albeit to a lesser extent prior to the intervention than

post intervention. Third, the estimated impacts diverge from the predicted impacts during

the months of peak electricity demand, and track them closely otherwise.25 The first point

suggests that households installed the CFLs soon upon receiving them in spring 2013. We

confirm the timing of CFL installation with follow-up survey data. The latter points under-

score the CFLs’ reliability effects, which were not accounted for in ex ante predicted impacts.

Basic estimates of CFL impacts in Figure 4 are downward biased (i.e. less negative than they

should be). We anticipate heterogeneous household-level treatment effects by transformer

treatment saturation, depending on the occurrence of reliability effects at the transformer

level. Although treated households with CFLs use fewer kW per hour of lighting services

consumed, fewer outages mean they can utilize more hours of electricity services, making

additional consumption of electricity services per month possible. Indeed, this additional

consumption is similarly possible for control households within transformers where the CFL

treatment resulted in fewer outages. Adoption spillovers may also exist, if control households

in both high and low saturation transformers adopt CFLs on their own. Thus, differenti-

ating between treated and control households in high versus low saturation transformers is

important in understanding CFL’s electricity consumption impacts.26

25The estimates closely follow the predicted impacts for first six months post-intervention (April through
September 2013), diverge in the five months following (October 2013 through February 2014) with the
estimated impacts near zero, then converge and remain close for the remainder of the study (March through
September 2014).

26Appendix A2 shows basic regression specifications that do not differentiate households by transformer
saturation. The basic regression results are in Appendix Table A5. Estimated impacts are substantially
smaller in magnitude than the results presented here.
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6.2 Disentangling the impacts of CFLs on electricity consumption

To address the confounding effects of the reliability externality as well as potential within-

transformer contamination due to adoption spillovers, we employ a specification similar to

that of Gine and Mansuri (2018) and Banerjee et al. (2014) to estimate the impacts of the

CFL intervention on household electricity consumption:

qigt = β1THighig ∗ Postt + β2TLowig ∗ Postt + β3CHighig ∗ Postt + β4CLowig ∗ Postt+

β5THighig + β6TLowig + β7CHighig + β8CLowig + β10Postt + αXig + γt + λig + εigt

(2)

where qigt is electricity consumption (kWh) in month t, for household i in transformer g;

THighig and TLowig (CHighig and CLowig) indicate whether i is a treated (control) house-

hold in a higher- or lower saturation transformer; Postt indicates whether t is the month

of treatment or any of the months that follow; and Xigt are household-level control vari-

ables.27 Month-by-year and household fixed effects, γt and λi, control for fixed seasonal and

household patterns of electricity consumption. In alternative specifications, we replace the

household fixed effects with household-by-season fixed effects to account for possible differen-

tial seasonal consumption patterns across households; or we add transformer-by-season fixed

effects to address concerns of differential transformer performance across seasons. Standard

errors are clustered at the household level.

Table 3 reports intent-to-treat estimates. The coefficients of interest are those on the inter-

actions between the indicators of household treatment by transformer saturation, THighig,

27Controls include the number of days in the monthly billing period, whether the household uses electricity
for heating, and heating degree days. The latter only entails variation in temperature over time, as all study
villages are covered by a single weather station and data are reported at that level. However, we do not
expect much spatial variation in temperatures across villages in the study, given their size and proximity.
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TLowig, CHighig and CLowig, and the Postt variable. Importantly, the omitted group is

comprised of only control households in control transformers, which we consider a “pure con-

trol” group. Column 3 is our preferred specification. It not only controls for fixed household

characteristics and month-by-year fixed effects, but also accounts for any fixed transformer

characteristics that result in differential performance across seasons. In addition to balance

tables presented in Section 4, Appendix Table A6 provides support that these groups are

balanced in the pre-intervention period for this particular specification.

The results in Column 3 indicate that the CFL treatment reduced household electricity con-

sumption by -37 kWh per month amongst treated households in low saturation transformers.

In high saturation transformers, the reduction amongst treated households is statistically in-

significant and of a smaller magnitude at -14 kWh. The difference between the impacts on

treated households in higher and lower saturation transformers is marginally statistically in-

significant; however it is meaningful in magnitude. Given that treated households in higher

and lower saturation transformers received a similar number of CFLs via treatment (Ta-

ble 1), we argue that the heterogeneous impacts on treated households reflect differences in

electricity service reliability by transformer saturation.28 Impacts among control households

are similarly consistent with reliability improvements in higher but not lower saturation

transformers. In higher saturation transformers, control households show a statistically in-

significant increase of 18 kWh per month in electricity consumption. In lower saturation

transformers, they show a reduction of -37 kWh per month. The difference between the two

is statistically significant.

Event study graphs of household monthly electricity consumption by transformer satura-

28Appendix Figure A3, a re-creation of the original event study graph, shows only treated households and
differentiates between those in high versus low saturation transformers. This illustrates that these differential
impacts over time are consistent with outage reductions among the high saturation transformers.
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tion offer more nuance and lend support to our interpretation (Appendix Figure A4). In

higher saturation transformers both treatment and control groups exhibit an increase in con-

sumption of electricity in the winter, which is consistent with improved electricity reliability.

Meanwhile in transformers with lower treatment saturation, both treatment and control ex-

hibit similar reductions in electricity consumption.

That control households in lower saturation transformers reduce electricity consumption,

and that they reduce it by the same amount as treated households (-37kWh), suggests that

control households are either adopting CFLs or taking additional actions to generate savings,

or both. When we examine CFL adoption, we observe control households are indeed taking

up CFLs but not at the same rate as treated households. Consistent with this, spring/fall

reductions in electricity consumption are larger – albeit insignificantly – among treated than

control households (-40 vs. -27 kWh) (Appendix Table A8). We do not find evidence of

other behavior changes such as a consumption rebound and changes in heating practices,

but we cannot disprove that households undertake additional energy saving actions. We

discuss these findings further in the next sections.

6.3 Other possible behaviors changes

Other potential byproducts of energy efficiency have been highlighted in the literature, such

as a rebound effect (Davis, Fuchs and Gertler, 2014) or less heat given off from lightbulbs,

thereby reducing temperatures (Adhvaryu, Kala and Nyshadham, 2018). We consider the

role these might play and assess their plausibility in the context of our intervention.
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6.3.1 Rebound effects

Increased consumption of lighting services (a direct rebound) or increased use of other ap-

pliances (an indirect rebound) may be a response to CFLs’ greater energy efficiency. This

impact would vary with transformer saturation. While we cannot rule out the possibility of

a rebound, our analysis shows no clear evidence of a rebound. In the absence of metering

data for individual appliances, we employ panel survey data on the household ownership and

usage of 3 types of lightbulbs and 24 different appliances. We estimate treatment impacts

on the hours per day the household uses each lightbulb or appliance, and assess whether

they are consistent with a rebound. Results indicate no significant effects of treatment on

lightbulb use nor on the use of household appliances (Appendix Table A9).

Moreover, the event study of electricity consumption presented earlier does not provide

evidence of a rebound (Figure 4). Following a winter spike in electricity consumption, it

returns to the predicted amount in the spring. In contrast, a rebound would have implied a

persistent change in behavior. Taken together, we found no evidence that a direct or indirect

rebound is driving the differences across transformers.

6.3.2 Temperature, waste heat, and electric heating

All estimates of the CFL intervention’s impacts on monthly electricity consumption (at the

household-level and collapsed at the transformer-level) control for the number of heating

degree days within each month to account for seasonal heterogeneity and the use of heating

during the winter.

Still, one possibility is that because CFLs produce less heat waste (i.e. they emit less heat)

than incandescent lightbulbs, switching to CFLs made it necessary for households to consume

more electric heating to maintain a given comfort level. In particular, our CFL intervention
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could have induced adoption of electric heating on the extensive margin or greater use on the

intensive margin (e.g. heating more of rooms or heating to a warmer temperature). We test

for both using our panel survey data and find no evidence of differential changes in heating

practices by treatment group and transformer saturation (Table 4).

It is also possible that households may respond differently to the CFL intervention depending

on whether they use electric heating or not. We re-estimate impacts on household electricity

consumption by transformer saturation, additionally differentiating by their self-reported

use of electric heating at baseline. Overall, our estimates are consistent with reliability

impacts and greater opportunities for consumption of electricity services in high saturation

transformers (Appendix Table A10).29 Taken together, the results indicate that electric

heating plays a role, but it is not driving the impacts on household electricity consumption

across transformer saturations.

7 Understanding CFL adoption

7.1 Spillovers in adoption

If reductions in electricity consumption among control households in treated transformers

are indicative of adoption spillovers, this should bear out in the number of CFLs they have

at follow-up. Moreover, having close neighbors who received CFLs should matter for adop-

tion by control households. As a check, we first estimate a panel regression with household

fixed effects similar to Equation 2, but with the number of CFLs as the outcome variable,

and controlling for the number of CFLs distributed through the intervention. Then, we

29In the specification with household fixed effects only (column 1), the coefficient on treated households
in high saturation transformers that heat with electricity does not seem to conform to the expected effects.
However, once we account for household-specific seasonal patterns of consumption (column 2), the results are
consistent with differences in reliability effects across transformers. The latter specification is also preferred
in our main analysis of household electricity consumption (Table 3).
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re-estimate the regression differentiating control households in treated transformers by their

proximity to a treated household.30

Results in Table 5 provide positive evidence of adoption spillovers (Column 1). Control

households in treated transformers–regardless of treatment saturation–have significantly

more CFLs than “pure” control households in control transformers at follow-up. Moreover,

control households have more CFLs in higher than lower saturation transformers, although

the difference is not statistically significant. In contrast, treated households have not acquired

additional CFLs between the intervention and follow-up survey. This is not surprising, given

our experiment provided sufficient CFLs for the average household to replace more than

half of its lightbulb stock. The CFL is a durable good with a multi-year expected lifespan.

Therefore, treated households would not require replacement CFLs after just one year.

These findings are noteworthy for multiple reasons. First, the estimated adoption spillovers

are additional to the overall increase in CFL ownership between baseline and follow-up (the

coefficient on Postt). Second, adoption spillovers contribute toward the electricity load re-

duction and thus to the reduction in outages within treated transformers (as shown in Table

2). Third, the spillover estimates support our argument that differences in electricity relia-

bility, not in adoption of CFLs, explain the heterogeneous impacts on household electricity

consumption by transformer saturation. The control households in higher saturation trans-

formers have no reduction in monthly electricity consumption despite having (insignificantly)

more CFLs than those in lower saturation transformers.

30As discussed in Breza (2016), a number of studies have used geographical proximity to measure spillovers,
including Dupas (2014), Godlonton and Thornton (2012), and Cohen, Dupas and Schaner (2015). We define
a household as being “close” to a treated one if it is within 100 meters from any treated household. Baseline
GPS location data are used to perform distance calculations in ArcGIS.
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The results in Table 5 also suggest that proximity does matter for adoption spillovers (Col-

umn 2). Control households that are in treated transformers but far from a treated household

do not have significantly more CFLs than the pure controls at follow-up. In contrast, the

number of CFLs found in control households that are both in treated transformers and

close to treated households is significantly larger than among pure controls. The adop-

tion estimates for control households in treated transformers increase once we account for

close proximity to a treated household. No statistically significant difference by transformer

saturation level is found among control households who have close-by treated neighbors.

Nevertheless, the adoption estimates are larger in magnitude for control households in high

saturation transformers relative to those in low saturation transformers.

Proximity matters not only in generating adoption spillovers but also in changing beliefs

and preferences regarding CFLs, suggesting a path through which adoption spillovers occur

(Appendix Table A11). The largest changes in beliefs and preferences occur amongst the

treated households relative to the pure controls, indicating learning about the technology

over time. We also see some evidence of changes in beliefs and preferences for CFLs amongst

the control households that are in treated transformers and close to treated households.

7.2 Adoption spillovers and peak load reduction

High saturation transformers have more treated households from which to generate adop-

tion spillovers and to contribute to peak load reductions. Although only 15 to 18 (10 to

14) percent of all households in high (low) saturation transformers received the CFL treat-

ment through our experiment, higher effective saturation proportions can be reached after

accounting for the spillovers attributed to our experimental distribution. Spillovers are thus

critical in assessing the extent to which our transformer-level treatments can induce reliabil-

ity improvements, and to which differences between low and high saturation treatments can
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result in differential peak load reductions and impacts on outages.

We re-do the calculations for expected peak load reductions, this time differentiating ex-

plicitly between the low and high saturation transformers and incorporating the adoption

spillovers (Appendix A3). These revisions result in estimated peak load reductions of 6

percent for the low saturation transformers and 8 percent for high saturation transformers,

well beyond the 4 to 4.5 percent benchmarking estimates in Appendix A1. Given that the

internal heating effects that cause transformers to overload are a square function of current

(ANSI/IEEE, 1981), reductions in load below the transformer rated capacity have non-linear

impacts on transformer failure. A peak reduction of 8 percent in an overloaded system can

yield a significantly larger reduction in outages when compared to a 6 percent reduction in

peak and certainly when compared to no reduction at all.

8 External validity

Our study setting is unique in that it allows us to generate technological externalities in

the form of improved electricity reliability using energy efficient lightbulbs at relatively low

treatment saturations. We do not claim that the same infrastructure constraint, same form

of technological externality, same type of technology, and same level of technology saturation

would be relevant in a different context. Instead, we argue that the potential for energy ef-

ficiency distribution programs to generate technological externalities should not be ignored.

We provide evidence that these externalities are possible to generate, and we show they are

crucial in understanding the welfare implications of energy efficiency programs. These points

remain valid to a large extent in a variety of settings.

Our experiment is generally relevant to developing and developed contexts in which demand-
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side management is a potentially important tool to reduce electricity consumption. These

include settings where infrastructure capacity is insufficient for current demand–such as our

study setting; where infrastructure will bind in the near future due to a rapidly increasing

demand; where demand for electricity is congesting the infrastructure capacity; or where

constraints are not related to distribution capacity, but to electricity generation. These con-

straints may be seasonal. For example, in developed countries failures can occur in heat or

cold waves when users run cooling or heating units. In developing countries that rely on

hydropower systems, generation capacity may be insufficient during a dry season.

The replication of our experiment would require determining the design that works in a differ-

ent setting. The right design depends on many factors, including the source of the constraint,

the feasible engineering impacts of the technology distributed, the contribution of the tech-

nology to on-peak electricity savings, and the number of consumers the infrastructure serves.

In our study setting, where failure in distribution systems leads to unplanned outages, greater

technology saturation is associated with improved electricity reliability. However, the type

of externality may not be limited to a reduction in outages. Where failure in distribution

systems is less common, such as in developed contexts, electricity reliability problems are less

likely to occur. However, congestion within the electricity distribution network due to peak

loads can impact utility prices, depending on the marginal electricity generation source. In

those settings, energy efficiency may induce externalities in the form of lower electricity costs.

Although we study CFLs specifically, our findings are also valid for other energy efficient

technologies. Recent programs are deploying light emitting diodes (LEDs), which are even

more efficient than CFLs. For developing countries, the use of electricity for lighting can

be up to 86 percent (Tanzania), whereas in industrialized countries it ranges from 5 percent

27



(Belgium, Luxembourg) to 15 percent (Denmark, Japan, and the Netherlands) of total elec-

tricity use (Mills, 2002).31 Therefore, savings generated by efficient lighting are pertinent

for reducing peak demand and avoiding overloads. In settings where households own more

electricity-using durables, such as the United States and other developed countries, the focus

has been primarily on the individual household-level effects of other “high impact” energy

efficiency technologies.32 Programs designed to induce an aggregate savings could expect

similar externality effects to the extent that these technologies contribute to a larger pro-

portion of the on-peak electricity consumption.

Finally, the source of the electricity constraint and technology of choice determine the optimal

technology saturation. In our study, the local distribution transformer is the constraint

within the electricity system that typically causes electricity outages. We calibrated the

CFL saturation necessary to bring peak loads below the transformers rated capacity, so as to

induce reliability effects. Because the transformers operated close to overload, implementing

a sufficient saturation of CFLs was feasible. A lower (greater) technology saturation would

be required to induce an externality effect the smaller (larger) the factor by which peak loads

exceed distribution capacity, the more (less) efficient is a technology, and the larger (smaller)

its contribution to electricity consumption on peak.

9 Conclusions

Electrification can have positive impacts on many indicators of development (Dinkelman,

2011; Rud, 2012; Lipscomb, Mobarak and Barnham, 2013; Van de Walle et al., 2013), yet

electricity service reliability is a major concern in achieving them (Pargal and Banerjee,

31Lighting is 10 percent of total US electricity consumption (EIA-OEA, 2018).
32One quasi-experimental study measured impacts of an appliance replacement program in Mexico (Davis,

Fuchs and Gertler, 2014).
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2014; World Bank, 2014; Klytchnikova and Lokshin, 2009). Unreliable electricity service is a

potential reason for heterogeneities in the impacts of electrification, given frequent electricity

outages can impact both households (Chakravorty, Pelli and Marchand, 2014; Samad and

Zhang, 2017) and firms (Allcott, Collard-Wexler and O’Connell, 2016; Alam, 2013).

Through a randomized saturation experiment, we increase the energy efficiency of households

by implementing a distribution of energy efficient lightbulbs. We show that, in our study

context, a high enough CFL saturation leads to improvements in the reliability of electric-

ity services for all consumers within the transformer, regardless of whether they themselves

adopt the technology. This improved electricity reliability is a classic example of a tech-

nological externality through which the returns to a particular technology are increasing in

the number of adopters. More reliable electricity services permit households who own CFLs

to consume lighting for more hours per month at a lower cost than traditional light bulbs.

Proximity matters in generating adoption spillovers, and adoption spillovers contribute to

the electricity reliability impacts. Other technologies inducing positive externalities have

been found to reduce the need for private investment in the technology, creating incentives

for households to free-ride on the adoption by others (Miguel and Kremer, 2004; Cohen and

Dupas, 2010; Dupas, 2014). Instead, the externality effect on reliability increases the returns

to the technology, thereby ameliorating (or even offsetting) the incentive to free-ride.

Thinking about interactions between technological externalities, technology impacts and

techonolgy adoption is important for program design and the deployment of new technolo-

gies. The seasonality pattern in electricity consumption impacts by CFL saturation suggests

that if the technology were distributed in peak-demand months and adopters were not aware

of reliability improvements, they may dismiss the technology as deficient. Instead, intro-

ducing technologies in low-demand months would allow end-users to observe reductions in
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consumption similar to the technology’s feasible engineering impacts, enabling them to un-

derstand that the smaller reductions in consumption during peak-demand months are a

welfare gain, not a sign of ineffective technology.

Lastly, accounting for the technological externality effects of energy efficient technology dis-

tribution is also crucial for program evaluation. Benefit calculations that include reductions

in private electricity consumption and increased electricity services are more than double

the calculations based on private electricity savings. This is the difference between approx-

imately $14 in benefits instead of $7 in the first year post-adoption (Table 6). When these

effects are taken into account, benefits are substantially larger than the upfront cost of pur-

chasing and distributing the CFLs, which was approximately $9 per household (Appendix

Table A13) in our experiment. This illustrates the importance of accounting for the positive

externality in the economic rationale for mass deployment of energy efficient technologies.
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Figure 1: Randomized saturation process
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Figure 2: Stylized example of randomized saturation design
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Table 1: Household demand for CFLs by transformer intensity

(1) (2) (3) (4)

Averages of treated households: 

Number of CFLs received  3.17 3.34 3.00 0.125 

Bid made for 1 CFL (KGS/CFL)  51.70 55.22 49.42 0.385

Price paid for 1 CFL (KGS/CFL) 12.56  12.69 12.44 0.747

Households 800 454 346

Transformers 85 42 43

Notes: Calculations made based on the experimental measures of demand from March/April 2013. Only treated 
households participated in the demand intervention, therefore calculations include only data for the treated 
households, not control households. "Treated households" is an intent to treat and includes all households assigned to 
the treatment, regardless of whether they actually received CFLs.  "Low saturation transformers" are those in which 
between 10 and 14 percent of households in the transformer were assigned to treatment. "High saturation 
transformers" are those in which 15 to 18 percent of households in the transformer were assigned to treatment. The 
exchange rate in March 2013 was 1 USD = 48 KGS.

Low saturation 
transformers 

High saturation 
transformers

All transformers Joint F tests (p-value)    
Low saturation =                 
High saturation 
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Figure 3: Number of days without electricity, by transformer-level treatment status

.

Notes: Analysis performed using data from household follow-up survey, collected in response to the survey 
question, "In the past month, how many days had your household been without electricity, due to problems 
with the electrical system in the village?" Control transformers are transformers in which no households 
received the intervention CFLs.  Treated transformers are transformers in which some proportion of 
households received the intervention CFLs.    
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Table 2: Aggregate effect of CFLs: improved electricity reliability

(1) (2) (3) (4)

TG low saturation -1.321 -1.302 -1.164 -1.108
(0.851) (0.862) (0.868) (0.864)
[0.433] [0.426] [0.434] [0.434]

TG high saturation -1.866** -1.841** -2.162*** -2.111**
(0.812) (0.815) (0.822) (0.814)

[0.000] [0.000] [0.000] [0.000]

Treated household -0.032

(0.159)
Treated household in TG low -0.262 -0.280

(0.186) (0.186)
Treated household in TG high 0.381 0.391

(0.279) (0.276)

Constant 3.810*** 3.810*** 3.811*** 3.587***
(0.836) (0.837) (0.838) (0.814)

Control: baseline days without electricity No No No Yes
p-value: TG low = TG high 0.228 0.227 0.047 0.047
Omitted group mean 3.24 3.24 3.24 3.24
Observations 838 838 838 836
R-squared 0.051 0.051 0.053 0.057

Dependent Variable: Number of Days Without Electricity (in past month) 

Notes: Analysis performed using data from both baseline and follow-up household surveys. Outcome variable is created in response to 
the survey question, "In the past month, how many days had your household been without electricity, due to problems with the electrical 
system in the village?" All regressions control for the number of households within the transformer.   "TG low" is a indicator variable 
that equals 1 if 10 to 14 percent of households in a transformer were assigned to treatment. "TG high" is a indicator variable that equals 
1 if 15 to 18 percent of households in a transformer were assigned to treatment. The omitted group is comprised of  households in 
control TGs. The "Household treatment status controls"  are separate binary indicators that equal one for treated households.  Standard 
errors are clustered at the transformer level and shown in parantheses, with * significant at 10% level; **  significant at 5% level; and 
***  significant at 1% level.  P-values accounting for multiple-hypothesis testing, as discussed in List, Shaikh, and Xu (2015), are shown 
in brackets. 
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Figure 4: Predicted and actual effects on electricity consumption (kWh per month)

Notes: Orange block demarks time period when CFLs were distributed. Distribution of CFLs began 
in March 2013, so by design the predicted impacts are zero up until that time. The predicted impact is 
calculated based on the number of CFLs distributed to the households, the number of hours of 
lighting reported by households in the baseline survey, as well as the shifting hours of sunlight 
throughout the calendar year.  Analysis of actual impacts performed using  household-level panel of 
monthly electricity consumption data, as provided from the electricity utility's billing records. The 
graph of the estimated impact was created by plotting the coefficients from regressing household 
electricity consumption (kWh) on household treatment status on a month-by-month basis.  The 
resulting regressions for each month within the study period mean that we cannot include household 
fixed effects (as is included through much of the paper's analysis) in creating these graphs. All 
regressions include controls for (1) the control households in treated transformers, making this 
estimate a comparison of treated households against pure control households (control househols in 
control transformers), (2) the household's baseline monthly electricity consumption (for the year prior 
to the intervention), and (3) the number of days within each monthly billing period. 
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Table 3: Household electricity consumption effects: results consistent with outage
reduction and adoption spillovers

(1) (2) (3)

Treated household in TG low * Post -44.174*** -36.998** -36.628**
(12.701) (15.693) (14.984)

Treated household in TG high * Post -23.604* -14.997 -14.419
(13.138) (16.418) (15.701)

Control household in TG low * Post -44.322*** -35.709** -37.188**
(13.344) (16.145) (15.270)

Control household in TG high * Post 8.050 21.079 18.116
(17.908) (23.040) (20.193)

Post 45.006*** 42.590** 40.684**
(16.271) (17.634) (17.198)

Omitted group baseline mean 328.10 328.10 328.10

Month-by-year FEs Yes Yes Yes

Household FEs Yes No Yes

Household-by-season FEs No Yes No
Transformer-by-season FEs No No Yes

Wald p-value: T in TG high = T in TG low 0.097 0.138 0.110

Wald p-value: C in TG high = C in TG low 0.003 0.011 0.004

Households 899 899 899
Observations 31,143 31,143 31,143 

Monthly Household Electricity Consumption  (kWh)

Notes: Analysis performed using  household-level panel of monthly electricity consumption data for the 
period between April 2011 to September 2014, as provided from the electricity utility's billing records. 
The omitted group is comprised of households in control tranformers. The "post" period are the months 
after the intervention implementation (from April 2013 onwards). "Treated" households were offered to 
receive up to 4 CFLs through the intervention. "Control" households were not offered CFLs through the 
intervention. "TG low" are transformers for which 10 to 14 percent of households in the transformer were 
assigned to treatment. "TG high" are transformers for which 15 to 18 percent of households in the 
transformer were assigned to treatment. "Control transformers" only contain control households. All 
regressions include controls for monthly heating degree days, number of days in each monthly billing 
period, and the use of an electric heater. Each month drops the top 1% of observations with respect to 
electricity use. All regressions drop households that moved during period between intervention and 
follow-up survey (101 households).  Standard errors are clustered at the household level and resported in 
parantheses, with * significant at 10% level; **  significant at 5% level; and ***  significant at 1% level. 
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Table 4: Effects on heating practices

(1) (2) (3)

Use electricity to 
heat

Proportion rooms 
heated

Number of rooms 
heated

T household in TG low * Post -0.026 -0.038 -0.056
(0.055) (0.069) (0.337)

T household in TG high * Post 0.052 -0.010 0.057
(0.057) (0.064) (0.293)

C household in TG low * Post -0.017 -0.044 -0.198
(0.044) (0.064) (0.314)

C household in TG high * Post 0.026 -0.003 -0.019
(0.085) (0.081) (0.374)

Post 0.089*** 0.079 0.610**
(0.031) (0.050) (0.236)

Omitted group baseline mean 0.247 0.729 2.890

Observations 1498 1426 1426
R-squared 0.87 0.72 0.81

Dependent Variables: Heating-related practices  

Notes: Data were collected via the baseline (March 2013) and follow-up (March 2014) surveys, forming a panel dataset. The omitted 
group is comprised of households in control transformers. All specifications include household fixed effects. Column 3 includes 
controls for the total number of rooms in the house. Regressions include only households for which there are both baseline and follow-
up data; households that moved during the period between the intervention and the follow-up survey are dropped. The "post" period data 
were collected via the follow-up survey in March 2014. "TG low" are transformers for which 10 to 14 percent of households in the 
transformer were assigned to treatment. "TG high" are transformers for which 15 to 18 percent of households in the transformer were 
assigned to treatment. "Control TGs" only contain control households. Standard errors are clustered at the transformer level and in 
parentheses, with * significant at 10% level; **  significant at 5% level; and ***  significant at 1% level.  
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Table 5: Spillovers: CFL stock at follow-up

(1) (2)

T household in TG low * Post 0.319 0.319
(0.260) (0.260)

T household in TG high * Post 0.139 0.139
(0.299) (0.299)

C household in TG low * Post 0.689***
(0.257)

C household in TG high * Post 0.843***
(0.303)

C household in TG low and close to T * Post 0.706**
(0.288)

C household in TG high and close to T * Post 0.910***
(0.308)

C household in treated TG and far from T * Post 0.447
(0.392)

Post 0.253** 0.253**
(0.108) (0.108)

Omitted group baseline mean 0.224 0.224

Wald p-value: T in TG high = T in TG low 0.618 0.618

Wald p-value: C in TG high = C in TG low 0.675 0.603

Households 749 749
Observations 1498 1498

Dependent Variable: Total number of CFL bulbs in home 

Notes:  Data on the total number of CFLs in homes were collected via the baseline (March 2013) 
and follow-up (March 2014) surveys, forming a panel dataset. The omitted group is comprised of 
households in control transformers. All specifications include household fixed effects and 
control for the number of CFLs given to the treated households through the intervention. 
Regressions include only households for which there are both baseline and follow-up data; 
households that moved during the period between the intervention and the follow-up survey are 
dropped. The "post" period data were collected via the follow-up survey in March 2014. "TG 
low" are transformers for which 10 to 14 percent of households in the transformer were assigned 
to treatment. "TG high" are transformers for which 15 to 18 percent of households in the 
transformer were assigned to treatment. "Control TGs" only contain control households. Being 
"close to T" is an indicator that equals 1 when a control household is located < 100 meters from 
a treated household.  Control households that are "far from T" are located > 100 meters from a 
treated household. Standard errors are clustered at the transformer level and in parentheses, with 
* significant at 10% level; **  significant at 5% level; and ***  significant at 1% level.  
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APPENDIX: FOR ON-LINE PUBLICATION
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Table A1: Check for differential attrition, by treatment status

Treated household in TG low -0.035
(0.041)

Treated household in TG high -0.037
(0.041)

Control household in TG low -0.030
(0.045)

Control household in TG high 0.026
(0.062)

Constant 0.271***
(0.031)

Wald p-value: T in TG high = T in TG low 0.9573
Wald p-value: C in TG high = C in TG low 0.3591

Observations: Households 1000

Notes: Data include all 1,000 households surveyed at baseline.  Households for which 
we have no follow-up survey data are those that (1) did not respond to the follow-up 
survey when approached, and (2) those households that had moved from the address 
between the baseline and follow-up surveys. Standard errors are  resported in 
parantheses, with * significant at 10% level; **  significant at 5% level; and ***  
significant at 1% level. 

No follow-up survey 
from household 

originally surveyed at 
baseline 
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Table A3: Household-level randomization check

Joint F tests           
(p-value)

All Control Treatment
Control = 
Treatment 

(1) (2) (3) (4)

General characteristics 
Household head completed secondary school 0.840 0.867 0.818 0.090
Household income past month (KGS) 10900 11463 10427 0.138
Household income past month per capita (KGS/person) 3668 3740 3608 0.603
Owner-occupied house 0.912 0.919 0.906 0.506
Number of people living in the home 3.6 3.7 3.5 0.218
Time at address (months) 203 201 204.137 0.789

Housing characteristics
Single-family dwelling 0.793 0.829 0.762 0.053
Number of rooms 4.302 4.245 4.35 0.409
Home made from  brick 0.535 0.569 0.507 0.100
Floors that are wood 0.877 0.864 0.887 0.388
Age of dwelling (years) 41.29 41.27 41.30 0.987
Electricity meter for single house 0.991 0.993 0.989 0.546

Electricity consumption practices
Outages in the past month 1.66 1.58 1.75 0.338
Winter electricity consumption (kWh/month) 554.80 541.11 566.33 0.379
Total number of appliances 8.4 8.6 8.2 0.210
Lighting hours per day 17.5 17.9 17.2 0.643
Think about saving electricity 0.946 0.934 0.955 0.500
Do something to save electricity 0.86 0.829 0.885 0.185
Rooms heated in winter 3.14 3.12 3.15 0.764
Total light bulbs in house 6.2 6.5 6.0 0.128
Total incandescent bulb in house 6.1 6.3 5.8 0.177
Total CFls bulbs in the house 0.2 0.2 0.1 0.353
Believe CFL use less energy 0.305 0.319 0.292 0.436

Number of households 1000 460 540

Note: All calculations performed using baseline survey data, except for electricity consumption (kWh), which was 
calculated using the electricity utility's billing records. Winter baseline electricity consumption is calculated for the 
months between November 2012 and February 2013.  In March 2013, the exchange was 1USD = 48 KGS. 
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Figure A1: Baseline electricity consumption by household treatment status

Notes: Graph made by plotting average monthly electricity consumption (kWh) and 
confidence intervals for households assigned to treatment and control groups. 
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Figure A2: Self-reported household peak electricity consumption

Notes:  Graph based on reponse to the question: "During which time frame does peak electricity consumption occur in 
your home?" Respondents were permitted to inlcude more than one time category in their response. Responses collected 
via survey during follow-up survey in Spring 2014.  
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Appendix A1: Bench-marking calculations of the intervention’s technologically

feasible impacts

Transformers are designed for a rated capacity and experience significant loss of life based

on the frequency, duration, and magnitude of overloads. The transformer heating effects

that lead to failure are a square function of current. This means that increases in load above

the rated capacity of a transformer have a disproportionately large impact on transformer

failure. The overload-driven failure modes of distribution transformers are well recognized

(see, for example, American National Standards Institute IEEE C57.91). This phenomenon

is particularly acute in developing country contexts where distribution transformers are over-

loaded frequently, for long durations, and to high values relative to their rating capacity. The

nonlinear impacts of overloads also mean that peak reductions of overloaded systems can

yield disproportionately large reductions in distribution-level outages (ANSI/IEEE, 1981).

We have implemented this two-staged randomized treatment to vary the distribution of the

CFLs at the household-level and the intensity of CFL saturation at the transformer-level.

To benchmark our findings, we calculate (1) the potential household-level reductions in elec-

tricity consumption resulting from replacing incandescent lightbulbs with CFLs, and (2) the

expected household-level peak load reduction from implementing this lightbulb replacement

en mass within the electricity distribution system. These calculations are shown on the fol-

lowing pages in Steps 1 and 2, respectively. The details of the calculations are shown in the

accompanying table.

Step 1: Benchmarking household reductions in electricity consumption

Benchmarking the technologically feasible reduction in electricity consumption at the household-

level is undertaken in three sub-steps. First, we calculate the power reduction (kW) that
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occurs from replacing the original bulbs with more energy efficient ones (found in Step 1A of

the following table). This is a mechanical difference and a function of the number of light-

bulbs changed, the wattage of the original bulbs that are being replaced, and the wattage

of the bulbs to which they are changed. We calculate a potential 0.253 kW reduction per

household, as a result of replacing 3.2 incandescent 100 W bulbs with 21 W CFLs.33

Second, we calculate the expected energy reduction (kWh) in monthly electricity consump-

tion for three different scenarios (winter, spring/fall, and summer months). Calculations

shown below in Step 1B. These different scenarios account for variations in day length (sun-

light hours) and heterogeneities in appliance use across seasons.34 Based on these calcula-

tions, we estimated electricity consumption to decrease, as a result of the intervention, by

between 22.8 kWh per month in the summer and 41.7 kWh per month in the winter. These

estimates provide a sense as to the magnitude by which monthly residential electricity con-

sumption could change via this intervention.

33From the survey piloting exercises in Fall 2012 and the baseline survey data collected in Spring 2013,
we know that 100 watt incandescent bulbs were most common in households prior to the intervention. We
selected 21 watt CFLs as the replacement bulbs, due their rating as 100 watt equivalent bulbs. Therefore,
we know that the typical household in our treated group is shifting from 100 watt incandescent to 21 watt
CFLs. On average, treated households received 3.2 CFLs through the intervention.

34Hours of lighting calculations are performed with data on hours of lightbulb use, as collected via the
baseline survey. Estimates of hours of lighting use throughout the year are extrapolated using data on the
timing of sunrise and sunset in the region. These predictions assume behavior with respect to lighting and
other electricity uses remain constant post-intervention, which is consistent with the evidence on a lack of
rebound effect and other related behaviors.
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Appendix A1 calculation details: benchmarking household load peak reductions

STEP 1. Benchmarking household-level reductions

1A. Household power reduction from changing bulbs: incandescent to CFLs 

(a) Average number of bulbs replaced per treated household 3.2

(b) Original bulb: Incandescent bulb wattage (W) 100

(c) Replacement bulb: CFL bulb wattage (W) 21

(d) Watt reduction:  [ = a*(b - c)] 252.8

(e) kW reduction:    [ = (a*(b - c))/1000] 0.2528

1B. Scenarios of expected household reductions in monthly electricity bill, by season 

Winter scenario Spring/Fall Summer scenario

(p) kW reduction per household 0.2528 0.2528 0.2528
(q) Average hours of bulb use per day 5.5 4.5 3
(r) Days in month 30 30 30

(s) Expected CFL savings per month (kWh)   [ = p*q*r ] 41.71 34.13 22.75

(t) Average monthly bill (kWh/month) 566.3 340 245

(u) Expected reduction in bill (%)  [ = (s/t)*100] 7% 10% 9%

STEP 2. Expected household peak load reductions

Winter scenario Spring/Fall Summer scenario

(t) Average monthly household bill (kWh/month) 566.3 340 245
(v) Average hourly demand per household (kW) [ = t /30 days/24 hours] 0.787 0.472 0.340
(w) Ratios of peak-to-average load (see notes below) 1.410 2.150 1.290
(x) Peak load estimate per household (kW) [ = w * v ] 1.109 1.015 0.439

(y) Reduction in household peak demand (%) [ = e/x] 23% 25% 58%

Notes: Average number of light bulbs replaced is based on the actual numbers of CFLs distributed through the 
intervention.  Incandescent wattage is the typical wattage found in households at the time of piloting the project and the 
baseline survey. CFL wattage is based on the lightbulbs distributed through the intervention. 

Notes: For these calculations, the winter scenario includes November through February; spring/fall scenario includes March, April, 
September, and October; and summer scenario includes May through August. The average hours of use per day is calculated using the 
baseline survey data (Spring 2013). Data on sunrise and sunset times are used to extrapolate to the other seasons. Average monthly 
electricity bill is calculated using baseline electricity consumption data for the treated households in our sample during the year prior to the 
intervention. 

Notes: These household calculations include only treated households receiving CFLs through the intervention and do not account for any 
spillovers in adoption by other households (either control households or other households not included in this surveyed sample) within a 
transformer. To provide estimates for the ratios of peak-to-average load, we use smart meter hourly electricity consumption data from a 
pilot of 10 transformers that are served by the same electricity utility and located near (but not in) our project sample. Given the proximity 
to our project sample, these transformers are subject to similar seasonal weather fluctuations and load patterns over the course of a day. 
Smart meter data availability vary by transformer; approximately half the transforrmers provide data covering  March 2015 to April 2016 
and the other half cover from October 2015 to April 2016. 
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Step 2: calculations of peak load reductions

Reducing peak load at the transformer level is key to reducing outages. To better understand

the potential aggregate impact that switching from incandescent bulbs to efficient lighting

could have on electricity distribution, we calculate the expected impact on peak load. To do

so, we perform calculations based on data from our sample and informed assumptions. Over-

loads occur during times of peak electricity consumption. In a setting in which electricity

is used for heating, overloads are most common in the winter, particularly winter evenings,

when household energy demand is greatest. Times of peak demand are the early mornings

and the evenings, meaning lighting disproportionately “on peak”.

An important assumption for these calculations is the peak-to-average load ratio. Using real

data from proximate transformers – 10 transformers located near (but not in) our project

sample – we calculated the peak-to-average load by season. Given the proximity to our

project sample, these transformers are subject to similar weather fluctuations and load pat-

terns. These transformers were also located in the same service area of the electric utility

managing the location in this project. These data provide hourly electricity consumption

data at the transformer level. For half of the transformers, we have data for the period

between March 2015 and April 2016, whereas for the other half of transformers, we have

data only from October 2015 to April 2016. This means we have the greatest number of ob-

servations for the winter and spring/fall months, the period when peak consumption occurs.

We use these transformer-level smart meter data to calculate the peaks and average loads

across this time period.

Given seasonal heterogeneities in peak load, we perform these calculations for three scenarios

(winter, spring/fall, and summer). Using data from our treated households on monthly elec-

tricity consumption, we estimate a 0.252 kW reduction in a peak load of 1.109 kW during
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the winter (1.015 kW in the spring/fall), which reflects a 23 percent (25 percent) decrease in

household peak demand. If 20 percent of the households within a transformer are included in

the program and each household sees a 23 to 25 percent reduction in its peak demand during

these crucial months, then the peak demand on the transformer is reduced by 4.6 to 5 percent.

These calculations, however, only include the treated households in the calculations of the

expected peak load reduction. If spillovers in adoption of the energy efficient technology occur

within a transformer, then this 4.6 to 5 percent expected reduction will be an underestimate

of the overall peak load reduction within a transformer.
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Table A4: Transformer-level monthly electricity consumption effects

(1) (2)
               

               

Transformer monthly 
electricity 

consumption  (kWh) 

Transformer monthly 
electricity 

consumption  (kWh) 

TG low*post -1964.391** -1964.391**
(874.195) (768.237)

TG high*post 43.921 43.921
               (880.357) (574.674)

Month-year FEs Yes Yes
Transformer FEs Yes Yes
Cluster standard errors Transformer Village

Wald p-value: TG high = TG low 0.012 0.046

Omitted group Control TGs Control TGs
Observations: TG level 3850 3850
R-squared 0.85 0.85

Notes: Regressions use a panel of monthly electricty billing data, collapsed at the transformer level. 
The monthly electricity consumption for a transformer includes all residential consumers within a 
transformer, not just the ones survyed for the experiment.  All columns include controls for "post" 
period, the number of HDD each month, the average number of days in billing period for the 
transformer, the total number of residential consumers being by the transformer in that month. "TG 
low" is a dummy variable that equals 1 if 10 to 14 percent of households in a transformer were 
assigned to treatment. "TG high" is a dummy variable that equals 1 if 15 to 18 percent of households 
in a transformer were assigned to treatment. Standard errors indicated with * significant at 10% 
level; **  significant at 5% level; and ***  significant at 1% level.
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Appendix A2: Basic estimates of impacts on electricity consumption

In the paper, we estimate the impacts of the intervention on electricity consumption, ac-

counting for externalities. In this appendix, we additionally report estimated impacts of

CFL treatment on household electricity consumption with two more basic specifications.

We first estimate a simple difference-in-differences model:

qigt = β1Tig ∗ Postt + β2Postt + β3Tig + αXigt + γt + λig + εig (A1)

where qigt is the electricity consumption (kWh) in month t for household i within transformer

g; Tig is an indicator of treatment status for household i in transformer g that equals 1 if

the household was assigned to CFL treatment and the opportunity to receive up to 4 CFLs

through the intervention; Postt is an indicator equaling 1 in the month of treatment and all

months that follow; and Xigt is a vector of household-level control variables.35 Month-by-year

fixed effects, γt, address the seasonal variations that occur throughout the year and affect

all households, such as hours of sunlight and climate. Household fixed effects, λi, control for

household-level characteristics that are fixed over time. Standard errors are clustered at the

household level.

The interaction, Tig ∗Postt, is the term of interest here, as the coefficient on this term, β1, is

the estimate of the average change in household monthly electricity consumption (in kWh)

that resulted from random household assignment to treatment. Table A5, Column 1, reports

intent-to-treat estimates of β1. The impacts are identified from variation within households

35These include controls for number of days in monthly billing period and whether the household uses
electricity for heating. We also control for heating degree days; however, we only have variation in temper-
ature over time, as the 7 villages in the study sample are all covered by one weather station and data are
reported at that level. Nevertheless, we do not expect for there to be much spatial variation in temperatures
across villages included in the study given their size and proximity.
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over time, controlling for month-by-year shocks.

The basic estimate in Appendix Table A5 Column 1 indicates that the CFL treatment re-

duces household electricity consumption by 16.7 kWh per month. The magnitude of this

coefficient is less than half the expected reduction, as calculated in the first step of our

benchmarking calculations in Appendix A1. This estimate, however, is flawed in several

respects. First, it is does not differentiate between treated households in high versus low sat-

uration transformers. Second, the omitted group in this regression is comprised of all control

households, regardless of whether they are located in control transformers, low saturation

transformers, or high saturation transformers.

To address the first concern mentioned above, we estimate the impacts of CFL treatment

on household electricity consumption, differentiating by treated households in higher versus

lower treatment saturation transformers. We estimate:

qigt = β1THighig ∗ Postt + β2TLowig ∗ Postt + β3THighig + β4TLowig+

β5Postt + αXigt + γt + λig + εig

(A2)

where THighig is an indicator equal to 1 for treated households located in high saturation

transformers and TLowig is an indicator equal to 1 for treated households located in low

saturation transformers. The omitted group in this regression is still comprised of all control

households, regardless of transformer treatment saturation.

The results of this estimation are presented in Appendix Table A5 Column 2. In low satu-

ration transformers, the CFL household treatment led to a 27.7 kWh per month reduction

in electricity consumption, on average. This reduction is statistically significant and close
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in magnitude to our benchmarking calculation of the expected reduction in the summer

scenario. In contrast, treated households in high saturation transformers did not signifi-

cantly reduce electricity consumption. As indicated by the Wald p-value, the coefficients for

the two groups of treated households are statistically significantly different from one another.

The difference in estimated impacts for low and high saturation transformers is consistent

with the outage results in Table 2. Treated households in low saturation transformers expe-

rience no significant change in outages (no increase in hours of electricity services available),

but they benefit as a result of replacing incandescent bulbs with CFLs. CFLs use fewer kW

per hour of lighting services and, thus, a reduction is observed in their monthly electricity

consumption. In contrast, treated households in high saturation transformers experience

fewer outages as a result of the transformer treatment. There is no significant or large re-

duction in kWh per month of electricity consumed amongst this group, but not because the

CFLs did not work. Rather, reductions in kW per hour of lighting consumed are offset by

an increase in hours of electricity services consumed due to greater availability of electricity.

The estimation in Column 2 is preferable to that in Column 1, but nonetheless problematic.

The omitted group is still comprised of all control households, regardless of transformer

treatment status. When either reliability externalities or adoption spillovers exist, the con-

trol households within treated transformers would be contaminated. If control households

in both high and low saturation transformers adopt CFLs on their own, then the impacts

estimated for treated households in Columns 1 and 2 are downward biased (i.e. less nega-

tive than they should be). This bias is less certain in high saturation transformers, where

control households’ electricity savings from a CFL adoption spillover may be mitigated by

an increase in electricity consumption due to improved electricity reliability.
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Table A5: Household electricity consumption effects, basic estimates

(1) (2)

Treated household * Post -16.679*
(8.780)

Treated household in TG low * Post -27.688***
(10.482 )

Treated household in TG high * Post -7.175
(11.026)

Omitted group All control houses All control houses

Month-by-year FEs Yes Yes
Household FEs Yes Yes
Household-by-season FEs No No
Transformer-by-season FEs No No

Wald p-value: T in TG high = T in TG low 0.098

Households 899 899
Observations 31,143 31,143

Monthly Household Electricity Consumption  

Notes: Analysis performed using  household-level panel of monthly electricity 
consumption data for the period between April 2011 to September 2014, as provided 
from the electricity utility's billing records. The "post" period are the months after the 
intervention implementation (from April 2013 onwards). "Treated" households were 
offered to receive up to 4 CFLs through the intervention. "Control" households were 
not offered CFLs through the intervention. "TG low" are transformers for which 10 to 
14 percent of households in the transformer were assigned to treatment. "TG high" are 
transformers for which 15 to 18 percent of households in the transformer were assigned 
to treatment. All regressions include controls for monthly heating degree days, number 
of days in each monthly billing period, and the use of an electric heater. Each month 
drops the top 1% of observations with respect to electricity use. All regressions drop 
households that moved during period between intervention and follow-up survey (101 
households).  Standard errors are clustered at the household level and resported in 
parantheses, with * significant at 10% level; **  significant at 5% level; and ***  
significant at 1% level. 
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Table A6: Baseline balance in monthly electricity consumption, by treatment status

Treated household in TG low 148.603
(112.499)

Treated household in TG high 88.138
(117.814)

Control household in TG low 87.168
(118.166)

Control household in TG high 63.326
(117.814)

Omitted group baseline mean 328.10

Month-by-year FEs Yes
Household FEs Yes
Transformer-by-season FEs Yes

Wald p-value: T in TG high = T in TG low 0.151
Wald p-value: C in TG high = C in TG low 0.668

Households 899
Observations 14237

Monthly Household 
Electricity Consumption  

(kWh)

Notes: Analysis performed using  household-level panel of monthly electricity 
consumption data as provided by the  utility's billing records. Data are for the period 
between April 2011 to March 2013, which is the pre-intervention period. The 
omitted group is comprised of households in control tranformers.  "Treated" 
households were offered to receive up to 4 CFLs through the intervention. "Control" 
households were not offered CFLs through the intervention. "TG low" are 
transformers for which 10 to 14 percent of households in the transformer were 
assigned to treatment. "TG high" are transformers for which 15 to 18 percent of 
households in the transformer were assigned to treatment. "Control transformers" 
only contain control households. All regressions include controls for monthly 
heating degree days, number of days in each monthly billing period, and the use of 
an electric heater. Each month drops the top 1% of observations with respect to 
electricity use. All regressions drop households that moved during period between 
intervention and follow-up survey (101 households).  Standard errors are clustered 
at the household level and resported in parantheses, with * significant at 10% level; 
**  significant at 5% level; and ***  significant at 1% level. 
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Table A7: Household electricity consumption effects, dropping top 5 percent of
observations

(1) (2) (3)

Treated household in TG low * Post -40.348*** -28.671** -30.555***
(10.290) (12.004) (11.600)

Treated household in TG high * Post -20.597** -13.623 -11.334
(9.954) (11.825) (11.515)

Control household in TG low * Post -40.675*** -29.915** -31.563***
(11.326) (12.554) (12.208)

Control household in TG high * Post 16.594 32.082 26.744
(16.515) (21.055) (18.183)

Post 32.194** 29.087** 29.574**
(13.117) (13.634) (13.311)

Omitted group baseline mean 305.08 305.08 305.08

Month-by-year FEs Yes Yes Yes

Household FEs Yes No Yes

Household-by-season FEs No Yes No
Transformer-by-season FEs No No Yes

Wald p-value: T in TG high = T in TG low 0.039 0.170 0.066

Wald p-value: C in TG high = C in TG low 0.001 0.003 0.001

Households 899 899 899
Observations 29874 29874 29874 
Notes: Analysis performed using  household-level panel of monthly electricity consumption data for the 
period between April 2011 to September 2014, as provided from the electricity utility's billing records. The 
"post" period are the months after the intervention implementation (from April 2013 onwards). The omitted 
group is comprised of households in control tranformers. "Treated" households were offered to receive up to 
4 CFLs through the intervention. "Control" households were not offered CFLs through the intervention. "TG 
low" are transformers for which 10 to 14 percent of households in the transformer were assigned to 
treatment. "TG high" are transformers for which 15 to 18 percent of households in the transformer were 
assigned to treatment. "Control transformers" only contain control households. All regressions include 
controls for monthly heating degree days, number of days in each monthly billing period, and the use of an 
electric heater. Each month drops the top 5% of observations with respect to electricity use. All regressions 
drop households that moved during period between intervention and follow-up survey (101 households).  
Standard errors are clustered at the household level and resported in parantheses, with * significant at 10% 
level; **  significant at 5% level; and ***  significant at 1% level. 

Dependent Variable:  Monthly Household Electricity Consumption  (kWh)
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Figure A3: Household monthly electricity consumption effects, treatment households
differentiated by transformer saturation

Notes: Orange block demarks time period when CFLs were distributed, beginning in March 2013. Analysis of 
these actual impacts are performed using  household-level panel of monthly electricity consumption data, as 
provided from the electricity utility's billing records. The graph of the estimated impact was created by plotting 
the coefficients from regressing household electricity consumption (kWh) on household treatment status on a 
month-by-month basis.  The resulting regressions for each month within the study period mean that we cannot 
include household fixed effects (as is included through much of the paper's analysis) in creating these graphs. 
All regressions include controls for (1) the control households in treated transformers, making this estimate a 
comparison of treated households against pure control households (control househols in control transformers), 
(2) the household's baseline monthly electricity consumption (for the year prior to the intervention), and (3) the 
number of days within each monthly billing period. 
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Figure A4: Household monthly electricity consumption effects, by transformer saturation

Notes: Orange block demarks time period when CFLs were distributed, beginning in March 2013. 
Analysis of these actual impacts are performed using  household-level panel of monthly electricity 
consumption data, as provided from the electricity utility's billing records. The graph of the estimated 
impact was created by plotting the coefficients from regressing household electricity consumption 
(kWh) on household treatment status on a month-by-month basis.  The resulting regressions for each 
month within the study period mean that we cannot include household fixed effects (as is included 
through much of the paper's analysis) in creating these graphs. All regressions include controls for (1) 
the control households in treated transformers, making this estimate a comparison of treated 
households against pure control households (control househols in control transformers), (2) the 
household's baseline monthly electricity consumption (for the year prior to the intervention), and (3) 
the number of days within each monthly billing period. 
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Table A8: Household monthly electricity consumption effects, by season

Winter Spring/fall Summer   
(1) (2) (3)

Treated household in TG low * Post -56.101* -39.764*** -15.448**
(33.703) (13.066) (7.209)

Treated household in TG high * Post -10.265 -31.002** -2.678
(35.687) (13.152) (7.267)

Control household in TG low * Post -67.568** -26.534* -14.528*
(34.215) (15.362) (8.072)

Control household in TG high * Post 46.827 24.001 -8.388
(49.140) (20.304) (11.902)

Post 219.011*** 44.124*** 32.234
(36.406) (16.212) (59.137)

Omitted group baseline mean 438.10 321.08 226.35

Month-by-year FEs Yes Yes Yes
Household FEs Yes Yes Yes

Wald p-value: T in TG high = T in TG low 0.151 0.449 0.083
Wald p-value: C in TG high = C in TG low 0.015 0.016 0.623

Households 899 899 899
Observations 10603 9697 10581

Monthly Household Electricity Consumption (kWh)

Notes: For estimates, the winter includes November through February; spring/fall includes March, April, 
September, and October; and summer includes May through August. The omitted group is comprised of 
households in control tranformers. Analysis performed using  household-level panel of monthly electricity 
consumption data for the period between April 2011 to September 2014, as provided from the electricity utility's 
billing records. The "post" period are the months after the intervention implementation (from April 2013 
onwards). "Treated" households were offered to receive up to 4 CFLs through the intervention. "Control" 
households were not offered CFLs through the intervention. "TG low" are transformers for which 10 to 14 
percent of households in the transformer were assigned to treatment. "TG high" are transformers for which 15 to 
18 percent of households in the transformer were assigned to treatment. "Control transformers" only contain 
control households. All regressions include controls for monthly heating degree days, number of days in each 
monthly billing period, and the use of an electric heater. Each month drops the top 1% of observations with 
respect to electricity use. All regressions drop households that moved during period between intervention and 
follow-up survey (101 households).  Standard errors are clustered at the household level and resported in 
parantheses, with * significant at 10% level; **  significant at 5% level; and ***  significant at 1% level. 
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Table A9: Tests for evidence of direct and indirect rebound

(1) (2)

Direct Rebound: Indirect rebound: 
Hours of lighting use 

per day
Hours of appliance use 

per day

T household in TG low * Post 3.376 2.839
(3.133) (3.340)

T household in TG high * Post 2.686 4.297
(3.241) (3.747)

C household in TG low * Post 3.875 0.310
(3.640) (3.260)

C household in TG high * Post 2.232 0.995
(4.068) (3.650)

Post -1.510 4.280
(2.755) (2.625)

Omitted group baseline mean 18.61 30.46

Wald p-value: T in TG high = T in TG low 0.7608 0.6667

Wald p-value: C in TG high = C in TG low 0.6674 0.8293

Observations 1498 1498
Households 749 749

Notes:  Data were collected via the baseline (March 2013) and follow-up (March 2014) surveys, forming a panel dataset. 
The omitted group is comprised of households in control transformers. All specifications include household fixed 
effects.  Regressions include only households for which there are both baseline and follow-up data; households that 
moved during the period between the intervention and the follow-up survey are dropped. The "post" period data were 
collected via the follow-up survey in March 2014. "TG low" are transformers for which 10 to 14 percent of households 
in the transformer were assigned to treatment. "TG high" are transformers for which 15 to 18 percent of households in 
the transformer were assigned to treatment. "Control TGs" only contain control households. Standard errors are clustered 
at the transformer level and in parentheses, with * significant at 10% level; **  significant at 5% level; and ***  
significant at 1% level.  
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Table A10: Household electricity consumption effects, by use of electric heating

(1) (2)

Treated household in TG low * Post * Heat -40.701** -17.006
(17.800) (21.778)

Treated household in TG low * Post *  No Heat -46.170*** -48.748***
(13.810) (16.750)

Treated household in TG high * Post * Heat -37.821** -13.630
(17.981) (22.906)

Treated household in TG high * Post * No Heat -16.797 -15.623
(14.716) (18.113)

Control household in TG low * Post * Heat -47.154** -13.992
(18.908) (22.563)

Control household in TG low * Post * No Heat -42.930*** -46.880***
(14.883) (17.541)

Control household in TG high * Post * Heat 27.801 61.543*
(28.947) (36.610)

Control household in TG high * Post * No Heat -2.963 -1.416
(20.153) (25.734)

Omitted group Houses in 
control 

transformers

Houses in 
control 

transformers

Month-by-year FEs Yes Yes 
Household FEs Yes No
Household-by-season FEs No Yes 

Households 899 899
Observations 31,143 31,143 

Dependent Variable:  Monthly Household Electricity Consumption  (kWh)

Notes: Analysis performed using  household-level panel of monthly electricity consumption data for the period 
between April 2011 to September 2014, as provided from the electricity utility's billing records. "Heat" refers to 
households that reported using electricity for heating at baseline. "No heat" are the households that reported not 
using electricity for heating at baseline. The "post" period are the months after the intervention implementation 
(from April 2013 onwards). "Treated" households were offered to receive up to 4 CFLs through the 
intervention. "Control" households were not offered CFLs through the intervention. "TG low" are transformers 
for which 10 to 14 percent of households in the transformer were assigned to treatment. "TG high" are 
transformers for which 15 to 18 percent of households in the transformer were assigned to treatment. "Control 
transformers" only contain control households. All regressions include controls for monthly heating degree 
days, number of days in each monthly billing period, and the use of an electric heater. Each month drops the top 
1% of observations with respect to electricity use. All regressions drop households that moved during period 
between intervention and follow-up survey (101 households).  Standard errors are clustered at the household 
level and resported in parantheses, with * significant at 10% level; **  significant at 5% level; and ***  
significant at 1% level. 
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Appendix A3: Estimates of technologically feasible transformer peak load re-

ductions, by transformer treatment intensity and incorporating spillovers

We redo the calculations for expected peak load reductions, this time making three crucial

adjustments. First, we approach these calculations holistically, at the transformer-level. Sec-

ond, we differentiate explicitly between the low and the high saturation intensity transform-

ers throughout the calculations. Third, we incorporate the spillovers in adoption amongst

control households in treated transformers. Altogether the last two adjustments are criti-

cal for attaining a more realistic estimate of the expected peak load reductions, not only

assisting in the assessment as to whether the transformer-level treatment was sufficient to

induce improvements in reliability, but also to determine whether the expected peak load

reductions across low and high treatment saturations are sufficiently different to support the

interpretation that differential impacts on outages resulted.

Details of the calculations are in Appendix Table A12. We first estimate the number of

households within high and low saturation transformers that might be acquiring CFLs, in-

cluding treated households, control households that are “close” to treated households and

control households that are “far” from treated households. Differentiating between the close

and far households is important given the results in Section 7 highlighted the role of prox-

imity in generating adoption spillovers. We use the average number of households in high

and low transformers (A) from the baseline balance table (previously shown in Appendix

Table A2, Panel C). We know the number of treated households, on average for high and

low saturations, from intervention data. Based on the local density of houses, we assume

for (D) that each treated household has 5 control households that are “close” (within 100

m or less). Given the density of housing within the sample region, this is a conservative

assumption so as to account for the control households that are “close” to multiple treated
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households (and therefore might be at a risk of being double-counted).

From the estimates throughout the paper, we know approximately the number of CFLs

households of each type have. For example, the number of CFLs in ”close” and ”far” house-

holds are based on the spillover results in Table 5 Column 2. Knowing the number of

households in each of these groups and the average number of CFLs each household type

has, we can calculate the total number of CFLs within a transformer.

In Appendix A1, we estimated the peak load per household (using data from a separate

smart meter pilot in a village outside of our study), which we use here to estimate the peak

load per transformer. On average 100 W incandescent bulbs were replaced by 21 W CFLs.

We multiply this reduction (79W) by the average number of CFLs in the transformer. We

calculate a reduction of 6 percent in electricity consumption for the low saturation trans-

formers and 8 percent for high saturation transformers. The internal heating effects of the

transformer are a square function of current. These nonlinear impacts of overloads mean

that peak reductions of overloaded systems can yield disproportionately large reductions in

distribution-level outages (ANSI/IEEE, 1981). It is therefore both reasonable and expected

that an 8 percent reduction in peak would yield a significantly larger reduction in outages

when compared to a 6 percent reduction in peak and certainly when compared to no reduc-

tion at all.

Two important points are made salient from these calculations. First, high saturation trans-

former not only have a greater proportion of households that are treated, but also a greater

proportion of their control households are close to the treated. Second, the difference between

the high and low saturation transformers in percent peak load reduction is not inconsequen-

tial and could result in differential impacts in outages.
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Table A12: Appendix A3 calculation details: benchmarking peak load reductions within
transformers

 Transformer peak load reductions in winter, by transformer treatment intensity 

Household numbers - Average number of: 
(A) total households per transformer [see notes] 63 48
(B) treated households per transformer [see notes] 6.5 6.3
(C) untreated households per transformer [= A - B] 56.5 41.7
(D) "close" untreated households per transformer [= B * 5] 32.3 31.3
(E) "far" untreated households per transformer [= C - D] 24.3 10.5

CFL numbers - Average number of: 
(F) CFLs received per treated household [see notes] 3.3 3
(G) CFLs attained per "close" untreated households [see notes] 0.704 0.910
(H) CFLs attained per "far" untreated households [see notes] 0.447 0.447

Transformer peak load reduction: 
(I) Number of CFLs per transformer [=B*F+D*G+E*H] 54.86 51.91
(J) Electricity consumption reduction per transformer (kW) [=(I*79W/bulb)/1000] 4.33 4.10
(K) Peak load per transformer (kW) [=1.109*A] 69.3 52.8

(L) Transformer peak load reduction (%) [=(J/K)*100] 6% 8%

Low 
Transformers

High 
Transformers

Notes: These transformer calculations include not only treated households receiving CFLs through the intervention as 
well as spillovers in adoption by other households (either control households or other households not included in this 
surveyed sample) within a transformer. The average number of households in high and low transformers (A) is based on 
Appendix Table A1, Panel C. (B) is based on calculations from intervention. Based on the local density of houses, we 
assume for (D) that each treated household has 5 control households that are "close" (within 100 m or less). Number of 
CFLs in (F) is based on results in Table 1.  Number of CFLs for "close" and "far" households in (G) and (H), 
respectively, are based on the spillover results in Table 4, Column 2. For (J) the 79W/bulb reduction is based on  [b-c] in 
Step 1A of the prior benchmarking calculations.  Household peak load for (K) is based on the winter estimate for (x) in 
the prior benchmarking calculations (which were informed using smart meter data and explained in Step 1C). 

Source

72



Appendix A4: Cost-benefit analysis of the CFL program

We demonstrate the implications of performing cost-benefit calculations for our CFL distri-

bution, with and without accounting for the aggregated impacts on electricity reliability, in

addition to the estimated impacts of CFLs on household electricity savings.

To simplify these calculations, we perform the cost-benefit analysis for the first year of the

CFL intervention. The one-year analysis is sufficient to show the importance of the reliability

impacts for these calculations. In addition, this simplification is useful for several reasons, in

that we can use the estimates from our experiment, which measure impacts over the course

of 18 months following the CFL distribution; avoid having to make assumptions about the

life span of the CFLs; do not have to worry about multi-year equilibrium adjustments in

consumption; and, finally, need not make any assumption regarding discount rates.

Cost calculations

We perform program cost calculations from the perspective of a government entity imple-

menting an energy efficiency program through a door-to-door campaign. These calculations

are made based on a CFL distribution program with the design of our experiment: in which

CFLs are distributed through individual house visits, at which time information on the ben-

efits of CFL adoption are provided to households. Incandescent bulbs currently in-use at

the households are not taken from the households. To encourage households to install the

CFLs quickly, the entity distributing the CFLs can remove the packaging at the time of dis-

tribution. Although such door-to-door campaigns may be effective at inducing technology

take-up, this is one of the more expensive distribution options available. Cheaper distri-

bution programs include ones that distribute coupons at stores or through mailings, which

permit households to receive the technology for free or a subsidized price.

73



In the calculation details in Appendix Table A13, we divide costs into two components: the

cost of CFL purchase and the cost of distributing the technology through the door-to-door

campaign. We base these calculations on details from our own experiment, such as the price

per CFL, the number of households served by the program, and the average number of CFLs

distributed per household. An organization buying energy efficient lightbulbs in bulk would

likely be able to acquire them at a lower cost than this project.

These cost calculations do differ from our experiment in that here we assume the govern-

ment bears 100 percent of the program costs. This need not be the case given that we find

households are willing to pay a positive price for the CFLs. We can adjust the assumptions

as to the number of households such a door-to-door campaign can reach per day, but such

shifts do not alter the costs substantially.

Benefit calculations

We perform three versions of benefit calculations for such a CFL distribution program, as

shown in Table 6. Important to note, these calculations do not include the value of any

reductions in pollution resulting from the CFL adoption.

Version A is our most simplified calculation of average benefits for households in all trans-

formers. This is based on the estimate of electricity consumption impacts from Appendix

Table A5, Column 2. This estimate does not account for any aggregate impacts in reliability

of electricity services and is therefore an underestimate of the benefits. Even so, the ben-

efits per household in the first year are approximately $1.16 less than the costs per household.

Version B estimates the benefits from the CFLs among households that do not have any
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changes in reliability of electricity services. These calculations use estimated electricity sav-

ings amongst treated households in transformers not experiencing any reliability improve-

ments (Table 3, Column 2). Here the benefits per treated household in year 1 are greater

than the costs per household.

Finally, Version C of the calculation includes the benefits from the CFLs amongst households

that experience improvements in the reliability of electricity services. These calculations use

the reduction in electricity consumption amongst treated households experiencing reliability

improvements (Table 3, Column 2). Part 2 of these calculations are still likely an underes-

timate of household benefits given that electricity prices were very low. In this calculation,

the benefits per treated household in year one are nearing double the costs per household.
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Table A13: Appendix A4 calculation details: costs of CFL distribution program

Part 1: CFL purchase cost 

Average # CFLs distributed 3.2 per household
Cost per  CFL 120 KGS
Cost per household 384 KGS 
Number of  households 543  
Total CFL purchase cost 208512 KGS 

Part 2: CFL Distribution cost 

Number of  households 543
Households visited per day 12
Time to distribute CFLs 45 Days
Cost per workday 467 KGS 
Total distribution cost 21132 KGS 

Total Program Cost (Purchase+ Distribution):

Costs  229643.75 KGS 
Exchange rate 48.00 KGS = 1 USD 
Costs 4784.24 USD 

Cost of Program Per Household  8.81$         

COSTS FOR CFL DISTRIBUTION PROGRAM
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