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Abstract

Overloaded electrical systems are a major source of unreliable power. Using a ran-

domized saturation design, we estimate the impact of energy efficient lightbulbs on

local electricity reliability and household electricity consumption in the Kyrgyz Re-

public. Greater saturation of compact fluorescent lamps (CFLs) within a transformer

leads to two fewer days per month without electricity, a technological externality ben-

efitting all households regardless of individual adoption. Receiving CFLs significantly

reduces households’ electricity consumption, but increased reliability permits greater

consumption of electricity services. At follow-up, CFL adoption spillovers are greater

among control households in high saturation transformers, where reliability improves.
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1 Introduction

Overloaded power distribution systems are a major problem for electricity service provision.

When the electrical grid is asked to deliver more power than its capacity allows, overloads

may cause grid components, such as local distribution transformers,1 to fail and result in

unplanned outages and unreliable electricity services (Lawton et al., 2003; Sullivan et al.,

2009; Singh and Singh, 2010).2 This problem is likely to worsen in the future. Experts fear

distribution failures will become more common as climate change and growing electricity de-

mand put further pressure on the existing electrical grid (Wolfram, Gertler and Shelef, 2012;

EOP, 2013; Auffhammer, Baylis and Hausman, 2017), requiring prohibitive investments in

infrastructure (ASCE, 2011).3

With this in mind, programs distributing energy efficient technologies potentially provide

an additional benefit beyond reducing emissions associated with electricity generation and

decreasing the cost of energy services to technology adopters. Energy efficient technologies

are frequently deployed via government programs with the specific goals of reducing peak

demand and increasing reliability of electricity services (Osborn and Kawann, 2001; Gilling-

ham, Newell and Palmer, 2006; World Bank, 2006). Efficient lighting technologies, such as

compact fluorescent lamps (CFLs) and, more recently, light emitting diodes (LEDs), are a

particularly popular technology choice of energy efficiency programs.4 These technologies

are a relatively accessible option for end-users, for whom lighting comprises 86% of elec-

tricity consumption in developing countries and 15% in the developed world (Mills, 2002).5

1Overloaded transformers are a critical binding constraint in electricity distribution systems. Trans-
formers on the electrical grid convert high-voltage electricity to usable, low-voltage electricity for household
consumption. Each transformer can transfer a certain maximum electricity load at any given time and
exceeding that load may cause breakage (Glover, Sarma and Overbye, 2011).

2Unplanned outages are more common in developing countries, but developed nations have distribution
failures too. For example, these can occur in heat or cold waves when users run cooling or heating units.

3In the United States, an estimated additional investment of $107 billion is needed by 2020 to keep the
electricity infrastructure functioning, of which $57 billion is for distribution and $12 billion is for generation.
Failure to achieve this will cost households $71 billion and businesses $126 billion by 2020 (ASCE, 2011).

4Between 1990 and the mid-2000s, the World Bank alone committed more than US$11 billion to energy
efficiency in developing countries. Examples of projects distributing CFLs aiming to reduce peak load and
increase service reliability (amongst other goals) include: 800,000 CFLs distributed in Uganda to reduce
peak load by 30 MW; 400,000 CFLs in Rwanda to reduce peak load by 16 MW; 1 million CFLs in Vietnam
to reduce peak load by 33 MW; 600,000 CFLs in Sri Lanka to reduce peak load by 34 MW; and 2.7 million
CFLs in South Africa to reduce peak load by 90 MW (World Bank, 2006; Sarkar and Sadeque, 2010).

5For industrialized countries, use of electricity for lighting ranges from 5% (Belgium, Luxembourg) to
15% (Denmark, Japan, and the Netherlands) of total electricity use, whereas in developing countries it is up
to 86% (Tanzania) (Mills, 2002). Lighting is 10% of total US electricity consumption (EIA-OEA, 2018).
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Moreover, consumption of lighting services tends to occur at peak times, making efficient

lighting particularly pertinent for peak load reduction and avoiding overloads.

The gains from efficient lighting programs are potentially high.6 CFLs, which are engineered

to consume 75% less electricity per lumen relative to traditional incandescent bulbs, are ex-

pected to deliver important electricity savings without requiring adopters to decrease their

lighting services consumed (DOE, 2009).7 Moreover, as electricity savings reduce the stress

on distribution infrastructure, a sufficient saturation of efficient lighting can induce a tech-

nological externality in the form of a more reliable electricity supply for all end-users served

by the same transformer, regardless of their own adoption of the technology (Trifunovic

et al., 2009).8 Improved reliability would permit all end-users to utilize more hours of elec-

tricity services, allowing increased consumption of electricity and additional productive use.9

Although programs deploying efficient lighting are ubiquitous and ostensibly promising, there

is fairly little evidence to date on their impacts.10 Perhaps more notably, there is a dearth

of evidence on the reliability effects of CFLs and energy efficient technologies more broadly.

Whether impacts on reliability are empirically possible is nevertheless a first order question

that speaks directly to the optimal scale of programs delivering efficient technologies and

the extent to which these programs can accomplish the various goals they are set to deliver.

The improvement in reliability resulting from CFL distribution is a form of technological

externality. Technological externalities and the technology saturation threshold at which

they occur are known to govern the take-up and impacts of other technologies (Miguel and

Kremer, 2004; Cohen and Dupas, 2010).11 Adoption and the benefits from adoption of en-

6Although we study CFLs specifically, our findings are also valid for LEDs, which are even more efficient.
7In practice, electricity savings may differ from engineering estimates, as they depend on the technology

and the interaction of end-user behavior with such technologies (Allcott and Mullainathan, 2010).
8For a particular technology, adoption of the technology by others is said to generate a positive (negative)

technological externality if an individual’s returns to the adoption of such technology increases (decreases) in
the fraction utilizing the technology (Foster and Rosenzweig, 2010). With potential for greater consumption
of electricity services, the value to a given household from adopting efficient lighting is expected to increase
with improved electricity reliability at some threshold of CFL saturation.

9This premise - that more reliable electricity service permits a household or enterprise to operate for
additional hours - differs from other potential responses to energy efficiency, such as a “rebound effect”
(Gillingham, Rapson and Wagner, 2016) or an increase in worker productivity during hours in which a
factory operates due to less heat waste (Adhvaryu, Kala and Nyshadham, 2018).

10Exceptions include Costolanski et al. (2017) and Adhvaryu, Kala and Nyshadham (2018), neither of
which address this technological externality.

11Cohen and Dupas (2010) identify the following factors that govern technology uptake and impacts: (1)
the elasticity of demand with respect to price, (2) the elasticity of usage with respect to price, (3) the impact
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ergy efficient technologies are similarly likely to hinge on the reliability externality that can

result from mass distribution of these technologies.

To assess the impacts of CFLs and test for the technological externality in electricity reliabil-

ity, we implemented an experimental distribution of CFLs in a district adjacent to Bishkek,

the capital of the Kyrgyz Republic.12 In a novel application of a randomized saturation de-

sign (Baird et al., 2018), we employ the electricity utility’s data on its residential customers

and the transformers through which these consumers are served.13 In each transformer we

sample 20% of the households into the study. We randomly assign treatment status in two

stages. First, we consider the technologically-relevant level at which the reliability exter-

nality typically occurs. We randomize electricity transformers to control, low or high CFL

treatment saturations, with 0, 60 or 80 percent of study households treated, respectively.

This results in 10 to 14 (15 to 18) percent of all households within low (high) saturation

transformers being assigned to treatment.14 Second, we randomize households individually

to treatment and control groups, according to the transformer saturation intensity assigned

in the first stage. Treated households are given the opportunity to purchase up to four CFLs

at a highly subsidized price. At baseline, households had on average 6.2 lightbulbs of which

0.2 were CFLS. Treated households received 3.2 CFLs, on average, through this intervention.

We begin by measuring the impacts of CFLs on outages and residential electricity consump-

tion. We collect a panel of survey data on households’ reported days without electricity

due to unplanned outages.15 Analysis of the electricity utility’s billing data on household

monthly electricity consumption, which extends for 18 months post-intervention, confirms

the outage result.16 We find that transformers with a higher CFL saturation have fewer

of price variation on the need of the marginal consumer, and (4) the presence of nonlinearities or externalities
in the production function. Their experiment focused on factors 1 through 3, and assume three levels of
externality in calculations of cost-effectiveness of a price subsidy. We directly test for the fourth factor.

12The Kyrgyz Republic is a lower-middle-income developing country, in which electricity reliability is a
concern. At baseline, CFLs were available in few stores and were not commonly used outside the capital.

13The use of multi-level randomized saturation permits the clean identification of treatment impacts when
there is ‘interference’, namely, when a unit’s outcome depends on the outcomes of other units in a same
group of reference (Baird et al., 2018).

14Power calculations informed the design decisions regarding technology saturation, so as to detect effects.
15Data on outcomes related to infrastructure failure, particularly electricity reliability and incidence of out-

ages, are typically difficult to acquire for developing countries (Klytchnikova and Lokshin, 2009). Therefore
recent research on the relationship between electricity reliability and firm-level outcomes uses “shortages”
or “scarcity” as proxies for reliability of electricity services. For examples, see Fisher-Vanden, Mansur and
Wang (2015) and Allcott, Collard-Wexler and O’Connell (2016).

16Because firms may adapt to electricity shortages by adopting generators (Steinbuks and Foster, 2010),
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days reported without electricity due to unplanned outages, controlling for baseline outages.

We consider this positive evidence that energy efficiency programs can improve electricity

reliability, if they reach sufficient levels of saturation.17 The impacts of CFL distribution on

electricity consumption vary according to whether there are effects on reliability. CFLs’ en-

ergy savings are larger and significant only in low saturation transformers, where no effect on

outages was found. The reduction in monthly electricity consumption observed for treated

households in low saturation transformers falls within the expected range for the technology

based on engineering performance estimates. Our evidence indicates that households in high

saturation transformers with improved reliability are consuming greater electricity services

due to fewer outages–an improvement in household welfare.

To better understand CFL adoption, we examine how control households’ take-up varies

with CFL saturation, and therefore with electricity reliability, within a transformer. There

is evidence of spillovers in take-up, as control households in treated transformers have sig-

nificantly more CFLs than the “pure” control households at follow-up. Take-up of CFLs

is higher among control households in high saturation transformers compared to those in

low saturation transformers. We interpret this finding with caution, given that differences

in CFL adoption by transformer saturation is statistically insignificant. Nevertheless, this

result is consistent with back of the envelop calculations of the expected benefits from us-

ing CFLs for scenarios with and without reliability externalities. We take these spillover

findings to suggest that households may learn more from their neighbors and may value the

additional electricity consumption and services supplied by CFLs, which are only possible

in the presence of increased electricity reliability.

Using these results we perform a simple cost-benefit analysis, which illustrates the impor-

tance of accounting for the reliability externality in estimating the welfare impacts of CFL

deployment programs. Benefit calculations that include both reductions in electricity con-

sumption and increased electricity services are more than double the traditional estimates.

Given this potential externality, an evaluation of an energy efficiency program that only

focuses on its direct beneficiaries may substantially underestimate the full program impact.

their self-reported outages suffer from systematic measurement error (Fisher-Vanden, Mansur and Wang,
2015). Our sample contains households, only one of which uses a generator for lights or appliances, elimi-
nating this concern.

17This result is robust to including a number of controls and supported by calculations of expected peak
load reduction.

4



Our experiment contributes to the literature in several ways. First, our experiment applies

a recent innovation in experimental design to the estimation of technological externalities

in the domain of energy efficiency. Multi-level randomized saturation designs are increas-

ingly used by a new wave of empirical work focused on the estimation of network, spillover

and general equilibrium effects, thereby addressing their interference in the identification

of program impacts (Sinclair and Green, 2012; Banerjee et al., 2014; Crepon et al., 2013;

Haushofer et al., 2013; Crepon et al., 2018; Filmer et al., 2018; Muralidharan, Niehaus and

Sukhtankar, 2018). Previous work also highlighted the importance of technological external-

ities in the study of technology take-up and pricing (subsidization) and in the assessment of

program impacts and cost-effectiveness (Miguel and Kremer, 2004; Cohen and Dupas, 2010;

Ashraf, Berry and Shapiro, 2010).18 Nevertheless, given the scale at which technological ex-

ternalities typically occur, designing an experiment that can identify such externalities has

been challenging.19 As a result, there is relatively little causal empirical evidence on them.20

We employ this novel experimental design to deliberately induce a technological externality

in terms of improved electricity reliability, by taking into account the constraint within the

electricity distribution system that typically causes electricity outages and randomly varying

the saturation intensity of CFLs at that level. In doing so, our study contributes to various

literatures concerned with energy efficiency, technological externalities, technology adoption,

and program evaluation in the presence of interference.

Second, our experiment contributes to the debate regarding the impacts of energy efficient

technologies, their potential to reduce household energy demand, and their promise as po-

tentially welfare-improving. Recent experimental and quasi-experimental studies of home

weatherization - a form of energy efficiency - programs in the United States suggest that

18In the context of these studies of health products, the technological externaltity takes the form of
herd immunity (deworming pills), a decline in the mosquito population (bednets), or more general health
externalities from a drinking-water disinfectant (Clorin).

19As Miguel and Kremer (2004) acknowledge: “When local treatment externalities are expected, field
experiments can be purposefully designed to estimate externalities by randomizing treatment at various
levels. [...] However, this multi-level design may not be practical in all contexts: for example, in our context
it was not possible to randomize treatment within schools. Randomization at the level of clusters of schools
also dramatically increases the sample size needed for adequate statistical power, raising project cost.”

20Miguel and Kremer (2004) provide experimental evidence of positive cross-school externalities from
deworming medicines in Kenya, but rely on more tentative non-experimental methods to decompose the
overall effect on treated schools into a direct effect and within-school externality effect. Cohen and Dupas
(2010) use a randomized two-stage pricing design to estimate the elasticities of demand and usage of bednets
with respect to price, assuming three levels of externality in calculations of price subsidy cost-effectiveness.
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realization rates from energy efficiency upgrades can be lower than engineering predictions

(Fowlie, Greenstone and Wolfram, 2017; Allcott and Greenstone, 2017).21 Contributing to

skepticism regarding the gains from energy efficiency, Davis, Fuchs and Gertler (2014) found

that a refrigerator and air conditioner replacement program in Mexico also did not deliver to

the engineering expectations, possibly due to increased appliance use or additional product

features. Energy efficient lighting, which is a significantly different type of intervention than

these, is less studied, particularly in experimental settings.22 We contribute to this litera-

ture, finding that the estimated impacts of energy efficient technology distribution vary with

the level of technology saturation, according to whether a technological externality in elec-

tricity reliability occurs. We also find that spillovers in adoption can significantly confound

empirical estimates of impacts. In low saturation transformers, where no electricity reliabil-

ity improvements are observed, our CFL treatment results in a statistically significant and

meaningful reduction in electricity consumption. Accounting for spillovers in CFL adoption,

this estimated reduction comes close in size to the expected engineering savings; that is a

realization rate between 66 to 100 percent.23 In high saturation transformers with improved

reliability, electricity consumption increases due to more hours of electricity availability. This

increase in consumption following the introduction of CFLs is a welfare improvement, not a

sign of ineffective technology. Our study findings add nuance to the previous evidence and

suggest that, given possible technological externalities and spillovers, energy efficient lighting

and other energy efficient technologies should remain on the menu of policy options.

Third, our experiment contributes to the discussion regarding the adoption of energy effi-

cient technologies and the energy efficiency gap. Cumulative research suggests an energy

efficiency gap due to individuals not maximizing the net present value of their energy spend-

ing when making technology purchase decisions (Hausman, 1979).24 A growing body of

work investigating the take-up of energy efficient technologies has largely focused on private

adoption decisions and the returns to individual adopters (Jaffe and Stavins, 1994; Allcott

21The realization rate compares engineering predictions and actual energy usage, generally relative to a
control group. A 100% realization rate means that on average energy savings were as predicted.

22A non-experimental study of a large-scale CFL distribution program in Ethiopia found that electricity
consumption was reduced by 45 kWh per household per month (Costolanski et al., 2017).

23This finding resembles recent machine-learning estimates from schools in the United States, with results
indicating substantial electricity savings from the energy efficient lighting interventions (Burlig et al., 2017).

24Building upon Hausman (1979), many believe households are not using energy efficient technologies when
they should. Energy efficient products often require a larger upfront cost than the standard products, but
exhibit lower operating costs. Consumers’ decision to invest in energy-saving devices relies on this trade-off
between initial investment and operating costs.
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and Greenstone, 2012; Gillingham and Palmer, 2014).25 In contrast, very little attention

has been paid to the role of spillovers in adoption decision and technological externalities

in electricity reliability, concerning all end users, adopters and non-adopters. We show that

spillovers in CFL adoption depend on exposure to the technology and intensify when elec-

tricity reliability improves. At higher CFL saturation, there are more neighbors to learn

from and CFLs can get more use due to fewer outages. Therefore, adoption and the benefits

from adoption of CFLs increase with the level of technology saturation within a transformer.

This finding provides an additional economic rationale for mass deployments of energy ef-

ficient technologies. In our study setting, greater technology saturation is associated with

improved electricity reliability. In developed contexts, where failure in distribution systems is

less common, it may still lead to lower electricity costs. Overall, spillovers and technological

externalities are key parameters underlying the impacts of mass deployment and subsequent

adoption of energy efficient technologies. Considering these effects, the level of private invest-

ment in some energy efficient technologies may be even less optimal than previously thought.

Finally, our study connects with the literature on infrastructure and development. Research

indicates that electrification is important for development (Dinkelman, 2011; Lipscomb, Mo-

barak and Barnham, 2013; Rud, 2012; Van de Walle et al., 2013), and residential access to

modern energy and lighting can improve living standards and productivity (World Bank,

2006). Yet access to electricity infrastructure does not guarantee reliable service (Klytch-

nikova and Lokshin, 2009). Electricity outages can impact both households (Chakravorty,

Pelli and Marchand, 2014) and firms (Allcott, Collard-Wexler and O’Connell, 2016; Alam,

2013), yet low-quality electricity infrastructure can be persistent (McRae, 2015), potentially

compelling demand-side interventions such as ours.

The remainder of the paper is as follows: Section 2 describes our experiment setting in

the Kyrgyz Republic. Section 3 explains the sampling process, the randomized design,

and the intervention. Section 4 details the data collected and offers randomization checks.

Section 5 estimates of the aggregate impacts of CFLs on outages. Sections 6 and 7 present

analysis of residential electricity consumption and adoption of CFLs, and discusses evidence

of technological externalities in electricity reliability and spillovers in technology take-up.

Section 8 addresses external validity. Section 9 concludes.

25Interventions to understand or increase purchase of energy efficient technologies have included energy
labeling (Newell and Siikamaki, 2015), social norms (Herberich, List, and Price, 2011), information on energy
costs (Allcott and Taubinsky, 2015), and subsidies (Allcott and Sweeney, 2016).
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2 Experiment setting

The Kyrgyz Republic provides a suitable context in which to study energy efficiency and

electricity reliability in a developing country setting. As of 2012, this lower-middle income

nation ranked 147th out of 187 countries for GDP (PPP) per capita. Nevertheless, due to

its history as part of the former Soviet Union, it is highly electrified. Nearly 100 percent of

Kyrgyz households are covered by formal electricity connections and the residential sector

consumes 63% of the country’s current electricity supply (Gassmann, 2014).

The country’s utilities face growing electricity consumption while constrained by infrastruc-

ture designed for substantially lower demand. Much of the existing electricity infrastruc-

ture dates back to the Soviet Union, including all 16 power plants (Zozulinsky, 2007).26

The distribution network was constructed for peak electricity consumption in line with lim-

ited household ownership of appliances. As households purchased more electricity-using

durables following the country’s 1992 independence, peak household electricity demand has

increased.27 In the years prior to our study, most of the 35/220 kV transformers - the last

step in delivering electricity to homes - had a load factor of between 0.9 and 1.2, which is

substantially greater than the optimal load of 0.7 (Amankulova, 2006). Electricity outages

have been frequent28 and transformer overloads serve as the primary source of these distri-

bution failures and unreliable electricity services.29

In our study setting, 54 households on average receive their electricity via a single trans-

former. Many households heat with electricity in winter, leading to large seasonal variations

in electricity consumption. On average, winter consumption is approximately three times

that of summer. Unplanned outages thus typically occur in the winter months, when local

distribution transformers are more likely to experience an overload. When a transformer

overload results in an outage, all households sharing the transformer are without electric-

ity services. Constrained transformer capacity is not only a concern for consumers but also

for the utility, as the electricity utility is not selling electricity to households during an outage.

26Ninety percent of electricity generation capacity is hydroelectric.
27Electricity consumption by the Kyrgyz residential sector is steadily increasing, consistent with predicted

pro-poor economic growth in developing countries more broadly (Obozov et al., 2013).
28In 2010, the country had 12,578 unplanned power outages (approximately 34 outages per day), which is

considered unreliable service by international standards (USAID, 2011).
29According to the electricity utility, planned outages and rolling blackouts (e.g. due to fluctuations in

reservoir water levels) did not occur during our study period.
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In spite of low residential electricity prices ($0.02 per kWh throughout this study), house-

hold energy expenditures comprise an estimated 7.1 percent of total household expenditures

(Gassmann, 2014). Worries regarding electricity bills and energy expenditures are common

and households report knowing and taking actions to cut them back.

Despite both the need to reduce peak electricity demand within the distribution system and

residential consumers’ expressed desire to minimize energy expenditures, very few households

used CFLs outside of Bishkek, the capital city, prior to this study. CFLs were available for

purchase only in large home repair stores and markets within Bishek30 and sold for prices

between 100 and 170 Kyrgyz soms, depending on the quality.31 In contrast, incandescent

lightbulbs were available to purchase in both rural and urban markets for approximately 15

to 20 Kyrgyz soms. Even with these low electricity prices, the payback period for the CFLs

was between 1 and 2 years.32

Households in our study sample are small, with an average of just under 4 members. House-

hold monthly income per capita is on average 76 USD per month (2.45 USD per person per

day) and household heads are educated, with 84 percent having finished secondary school.

Most households (91 percent) live in owner-occupied homes. They comprise an average of 4.3

rooms, and are typically constructed of brick (54 percent) or a hay/adobe mix (38 percent).

Households are served by formal connections to the electrical grid, are metered individually

(i.e., houses do not share meters), and receive a monthly electricity bill based on their meter

readings. At baseline, they use an average of 232 kWh per month in the summer (June

to September) and 633 kWh per month – more than double – in the winter (November to

February). On average, households have 8 electricity-using durables33 and many households

(39 percent) report heating with electricity.34 A small proportion have an electric hot water

heater (14 percent), and almost none (2 percent) have air conditioners. Only 1 household

30Residents of districts adjacent to the capital frequently travel to the city and could have purchased CFLs
pre-intervention.

31In March 2013, the exchange rate was approximately 1 USD = 46 Kyrgyz soms.
32Payback period calculations (not shown) were based on typical lightbulb use in our sample and electricity

and CFL prices within the region. We show cost-benefit calculations later in the paper.
33Almost all homes have a television and refrigerator. Approximately three-quarters of households have

electric stoves, an iron, and a clothes washing machine.
34Households conserve on heating. Most households report heating their houses at least sometimes with

coal (80%), and on average they heat 3/4 of all their rooms during winter.

9



reported having an electricity generator for purposes such as lighting.

Our study households largely indicate that they both frequently worry about saving elec-

tricity (95 percent) and take measures to save electricity (86 percent). More than half the

households report knowing about energy efficient lightbulbs (56 percent). However, the use

of CFLs was low. Only a few households had them, and in small numbers (resulting in 0.17

CFLs per household, on average). The majority of households did not know or believe that

CFLs consume less electricity (70 percent), did not expect savings in their electricity bill

from replace incandescent bulbs with CFLs (72 percent), and did not believe the electricity

savings would pay back the upfront costs of the CFLs (69 percent). Households were also

unaware of differences in quality (88%) and in potential electricity savings (80%) between

different types and brands of CFL.

3 Randomized experiment with energy efficiency

3.1 Sampling process

For our sampling procedure, we used data from electricity utility records on over 40,000

residential customers in a district adjacent to Bishkek, the country’s capital. These records

contain crucial information to identify each of the households in the district as well as the

transformer through which each household is served.

Within the study district, we chose seven villages (comprising 248 eligible transformers) due

to their accessibility from Bishkek during the winter months.35 We further restricted the

sample to the 124 eligible transformers with below median monthly household electricity

consumption in the year prior to the intervention. Such households and transformers in

this peri-urban setting are experiencing rapid growth in electricity demand, putting a stress

on existing electricity infrastructure. To complete the sampling process, 20 percent of the

households from each transformer were randomly selected to participate in the study. Be-

cause the number of households per transformer is heterogeneous, the exact number sampled

in each transformer also varies.

35Transformers providing at least 5 households with electricity were eligible. According to the electricity
utility, transformers serving fewer households likely also served industrial consumers.
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3.2 Experimental saturation design

The randomized saturation design varies household exposure to the CFL technology within a

transformer, to test for a technological externality effect, and its subsequent impact on CFL

adoption. Transformers are first randomized to differing treatment saturations, and then

households within those transformers are randomized either to receive CFLs or to control

status, according to the saturation previously assigned.

Figure 1 depicts how treatment status was randomly assigned in two stages. In the first

stage, the 124 sampled eligible transformers were randomized into three groups: control,

lower treatment saturation, and higher treatment saturation. Due to funding constraints,

households in 14 control transformers were not surveyed. This resulted in only 110 eligible

transformers being finally included in the study, with 25, 45, and 40 transformers in con-

trol, lower and higher saturation groups respectively. In each transformer 20 percent of the

households were sampled into the study. In control transformers, no study households were

treated. In lower-saturation transformers, 60 percent of study households were treated. In

higher-saturation transformers, 80 percent of study households were treated. Thus, the first

stage randomization results in approximately 10 to 14 (15 to 18) percent of all households

within low (high) treatment saturation transformers being assigned to treatment.

In the second stage, a total of 1,000 study households within the 110 transformers were

randomized into either control or treatment status. This resulted in 457 and 543 households

in each group respectively. By design, as depicted in Figure 2, treated households are found

only in treated transformers, in the proportions set by each transformer’s treatment intensity.

Control households, however, can be in either control or treated transformers. The two stages

of randomization also induced spatial heterogeneity in the location of the treated households,

leading to variation in the proximity to and number of treated neighbors.

3.3 Intervention

In the spring of 2013, all study households were visited and invited to participate in a base-

line survey regarding electricity use. After finishing the survey, all households were given

150 Kyrgyz soms (approximately 3.26 USD) as compensation.36 Interaction with the control

36As of 2011, the average monthly nominal employee wage was 9,352 KGS per month (or an estimated
467 KGS per day of work) (National Statistical Committee of the Kyrgyz Republic, 2012).
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households was complete at this time.

Households randomly assigned to the treatment group were offered the opportunity to pur-

chase up to 4 CFLs37 at a highly subsidized, randomly-drawn price, via a willingness to pay

experiment.38 The set of possible prices, in Kyrgyz soms, was {0, 5, 10, 15, 20}. The market

price for CFLs was a minimum of 100 KGS, so treated households were paying a maximum

of 20% of market price. The market price for incandescent lightbulbs was between 15 and

20 KGS. On average, treated households received 3.2 CFLs via the intervention, paying an

average price of 13 KGS per CFL. The rate of non-compliance to treatment was 12%, as

some treated households opted to stop after the survey, thereby receiving zero CFLs.39

All study households were visited again in the spring of 2014, one year after the intervention,

for a follow-up survey. Of the original 1,000 study households, 101 addresses were identified

as having new tenants in the year since the intervention. We interviewed all households

currently living at the original addresses, as it was difficult to know exactly when residents

moved or if the CFLs had moved with them.40 A total of 835 original respondents were

re-interviewed for the follow-up survey. Upon completion, survey respondents were again

offered 150 KGS to compensate for their time.

4 Data

We collected baseline and follow-up household data through in-person surveys prior to the

intervention (March 2013) and one year after (March 2014). Baseline and follow-up data

include information on various household demographics, electricity-related behaviors, appli-

ance ownership and use, lightbulb ownership (type, wattage, etc), lightbulb use (room of use,

hours used in a typical day, etc.), and perceptions and understanding of the CFL technology.

We track the number of CFLs distributed to each treatment household at baseline.

Importantly, both survey rounds asked households to report the number of days in the month

37We provided up to four CFLs as pilot surveys indicated that, on average, households had five to six
lightbulbs at baseline. We sought to replace most of their incandescent bulbs with CFLs.

38The experiment utilizes the Becker-de Groot-Marschak methodology to measure demand for CFLs. The
use of this method to elicit demand is demonstrated in Berry, Fischer and Guiteras (2015).

39For intent-to-treat estimates, these households are considered treated.
40Survey enumerators made at least four attempts to survey the household. If enumerators were informed

that the previous respondents had moved, then the new residents were surveyed.
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prior that they did not have electricity due to outages. The number of outage days was cho-

sen as proxy of electricity reliability after extensive piloting and the electricity utility’s input

regarding heterogeneity in outage length.41 Because fieldwork for both survey rounds began

in March, the ‘month prior’ captures the occurrence of outages in winter months, when the

electricity demand and stress on the transformers is the greatest.42

We supplement our household survey data with electricity utility data for the period start-

ing in October 2010 and continuing through September 2014. This provides observations

30 months prior to and 18 months following the intervention. One important feature of

this time period is that electricity prices remained constant at 0.02 USD per kWh.43 The

utility records identify both the transformers and households served by them, as well as the

monthly electricity bills for each household. The utility did not collect transformer-specific

outage data; however, analysis of household electricity consumption data in transformers

with high relative to low CFL saturation is an important tool to corroborate results based

on self-reported outages and address concerns about misreporting.

Furthermore, we collected GPS data on the location of each residence comprised in the study.

These spatial data permit the calculation of measures relevant for the analysis of potential

spillovers in adoption, such as the distance to nearest treated household and the number of

treated households within certain radii.

4.1 Randomization balance

We compared baseline characteristics both at the transformer and household levels to un-

derstand the outcome of randomization. Comparisons use both household survey data and

data on transformer characteristics, as provided by the electricity utility.

First, we highlight the lack of systematic differences in baseline demand for CFLs by transformer-

level treatment saturation. To do so, we compare baseline experimental estimates of house-

hold demand for CFLs in Table 1. To further illustrate this point, we graph the distribution

41According to the utility, transformer outages last between a few hours and a few days. The trans-
former repair required and availability of replacement parts determines the outage length after a transformer
overload.

42For this reason, outages tend to be most prevalent in winter months.
43A tariff reform was introduced in late 2014 and therefore we end our analysis in September to avoid

conflating the CFL intervention with the tariff change.
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of per CFL unit bids in Appendix Figure 1. Additional transformer-level balance test results

are shown in Appendix Table 1. There are no statistically significant differences between

the low saturation transformers and the control transformers, nor are there any statistically

significant differences between the high saturation transformers and the control transform-

ers. The high and low saturation transformers do have one significant difference from each

other. They differ in the number of households within the transformers. We can control for

this characteristic in related regressions and perform additional robustness checks.

Results from the household-level balance tests are shown in Appendix Table 2. The two

household-level treatment groups are statistically identical along most dimensions. Impor-

tantly, most households in all groups have their own individual electricity meters. There are,

however, two slight differences. Control households are slightly more likely than treatment

households to have a household head that has completed secondary school education, and

to be in homes that are single family buildings (in comparison to the multi-unit apartment

buildings). This difference is about what could be expected by chance. If anything, these

differences would downward bias our results.

A graph of pre-intervention electricity consumption over time, in Appendix Figure 2, high-

lights important heterogeneities in electricity consumption over a year and shows the same

seasonal variation for both treatment and control households. The large spike in winter elec-

tricity consumption is due in large part to electric heating and is the reason that electricity

outages are most frequent in that season. Longer hours of lighting due to shorter days play

a lesser role. The winter peak is somewhat greater among the treated households than the

control in both pre-intervention winters (winter 2011 and winter 2012). To account for these

patterns, our analysis will include month-by-year fixed effects and either household fixed

effects or the more stringent household-by-season fixed effects.

5 Impacts of energy efficiency on electricity reliability

As common in other settings, unplanned outages in the Kyrgyz Republic typically result

from overloads within the distribution system. Overloads occur at times of peak electricity

consumption, when electricity demand is greatest and distribution transformers are strained,
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causing outages.44 In this section, we illustrate the potential for energy efficient lightbulbs

to reduce peak electricity consumption at distribution transformers and then estimate the

impacts on outages using household panel data.

5.1 Benchmarking impacts on transformer outages

To better understand the extent to which replacing incandescent bulbs with CFLs could

feasibly result in aggregate impacts that reduce transformer outages, we performed a set of

benchmarking calculations with three different seasonal scenarios. As further demonstrated

and discussed in Appendix Calculation 1, we conduct these calculations in two steps. First,

we calculate the potential reductions in electricity consumption induced by the intervention’s

household-level CFL treatment. Second, we calculate the potential transformer-level peak

load reduction resulting from the aggregate adoption of CFLs within a transformer.

Our calculations indicate that switching 3.2 incandescent lightbulbs to CFLs could sub-

stantially reduce average household monthly electricity consumption, both in absolute value

(kWh) and percent of monthly electricity bill. Changing to CFLs could save between 34 kWh

per month in the spring/fall months and 42 kWh per month during the winter months; sea-

sons with substantially higher demand than the summer. This represents a non-trivial per-

cent reduction in household average monthly electricity bills, in both winter and spring/fall

scenarios (7% of the 566 kWh winter average and 10% of the 340 kWh spring/fall average).

To affect outages, energy efficiency must do more than reduce average monthly electricity

consumption. Overloads, and therefore outages, typically occur due to excess demand dur-

ing times of peak load. Lighting is disproportionately used “on peak,” meaning that it can

contribute substantially to overloads. Therefore, we need to estimate the potential impacts

of lightbulb replacement on peak load.45 In step two of our benchmarking calculations, we

calculate that the CFL intervention reduces household peak load by 19% (31%) in the win-

ter (spring/fall). In the winter, this switch from 100 W incandescent bulbs to 21 W CFLs

reduces peak load by 1.337 kW. For a distribution transformer with 20% of its households

treated, this represents a 4% reduction in peak load. Appendix Calculation 1 provides details.

44In this setting, the months of peak demand are October through April. These months, called the “heating
season” by the electricity utility, are peak months due to the use of electricity for heating services.

45According to the electricity utility, times of peak demand within a day are 6 to 9 am and 6 to 10 pm.
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Electricity utility engineers claim that the above reductions would be sufficient to reduce

transformer outages. In Figure 3, we plot the reported outages at follow-up by transformer-

level CFL saturation, which provides evidence suggesting this occurs.46 As the graph shows,

the distribution of reported outages among households in treated transformers is shifted left-

ward (towards zero outages) in comparison to the graphed responses of households in the con-

trol transformers. This provides suggestive evidence of a relationship between transformer-

level CFL saturation and outages, motivating the regression analysis that follows.

5.2 Estimating the impacts of CFLs on outages

We use the transformer-level randomization to estimate the impact on reported unplanned

electricity outages using the following equation:

Oig = πHighig + ρLowig + βTig + ηXg + εig (1)

where Oig is the number of days without electricity due to outages in the month prior to

the follow-up survey as reported by household i in transformer g; Highig indicates if house-

hold i is in a higher-saturation transformer, with between 15 to 18 percent of all households

assigned to treatment, regardless of the household’s own individual treatment status; Lowig

indicates whether household i is in a lower-saturation transformer, with between 10 to 14

percent of households assigned to treatment, regardless of the household’s own individual

treatment status;47 Tig is an indicator equal to 1 if household itself was assigned to treat-

ment; and Xg is a vector of transformer-level controls.48 Standard errors are clustered at the

transformer level.49

46The follow-up survey occurred in March and April 2014, so the months in which we are measuring days
without electricity due to outage include February and March. Data on reported outages are collected in
both the baseline and follow-up surveys in response to the question: “In the past month, how many days
has your household been without electricity, due to problems with the electrical system in the village?” The
question was asked in this way to prevent households from conflating system outages with other reasons (e.g.
bill non-payment) for which the electricity might not function at their individual household.

47In higher (lower) saturation transformers, 80% (60%) of study households were assigned to treatment.
There is heterogeneity in the number of households across transformers, and we sampled 20% of all house-
holds within each transformer to include them in the study. Therefore, the randomized study saturation
proportions result in between 15 to 18 (10 to 14) percent of all households in high (low) saturation trans-
formers actually receiving the CFL treatment

48We can and have also run these regressions collapsing to the transformer level and using the average
reported outages per transformer. In doing so, we get similar results; however, in using the transformer level
average, we lose our ability to control for the respondent household’s own treatment status.

49We also correct standard errors for multiple hypothesis testing, per List, Shaikh and Xu (2016).
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Results in Table 2 indicate that the energy efficient technology led to an transformer-level

impact in the form of improved reliability. Table 2, Column 1 shows the basic results at the

transformer level, given by π and ρ in the equation above. We see between one and two fewer

days without electricity in the low and high saturation transformers, respectively. However,

the reduction in days without electricity due to outages is only statistically significant for

households in the high saturation treatment transformers. They report approximately half

as many days with outages as households in control transformers (two in comparison to

four). The estimates are robust to including a set of transformer-level controls, such as the

number of households within the transformer and the baseline number of outages reported.

High saturation transformers have more treated households (by definition) and one may be

concerned that those households have an incentive to report fewer outages. To address this

potential concern Table 2, Column 2, controls for the reporting household’s own treatment

status. Accounting for individual household treatment status indicates that such differential

responses, if anything, may have biased the results downward. The coefficients for the high

saturation transformers, when controlling for household treatment status, are slightly larger

in magnitude (i.e. more negative) and the difference in outage-day reductions between house-

holds in high and low saturation transformers (two versus one) is also statistically significant.

These findings indicate that our energy efficient lighting technology reduced distribution

outages, thereby demonstrating impacts on electricity reliability. If the intense saturation

of treatment households within a transformer reduces outages at the transformer-level, then

household reported outages should be correlated within a given transformer. As a robustness

check, we calculate the intra-cluster correlation of the number of outages reported at follow-

up.50 Our calculation results in an intra-class correlation of 0.56, indicating that responses

within transformers are indeed highly correlated and supporting our interpretation.51

6 How energy efficiency affects electricity reliability?

In this section, we decipher how CFLs generate the transformer-level impacts. The electricity

utility’s monthly household billing records are used to verify the results employing self-

50The cluster in this analysis is the transformer.
51Setting aside differences in recall, we knew ex ante that responses would not be perfectly correlated with

one another, as households within a single transformer were surveyed on different dates and therefore the
reference point of the “past month” can differ across households within a transformer.
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reported outage measures in Section 5. If impacts on outages did occur, we should see

evidence in the household electricity consumption data. We decompose the CFL treatment

impact on household electricity consumption employing the random variation in treatment,

at both the transformer- and household-levels, induced by the two-stage randomization.

6.1 Event study of household electricity consumption

We illustrate the intuition of our analysis in an event study-style graph, shown in Figure 4.

We employ the utility records on household electricity consumption and plot the estimated

impacts of CFL treatment on household-level electricity consumption month-by-month. We

illustrate the estimated intervention impacts by plotting – in blue – the coefficients from re-

gressing household electricity consumption on household treatment status month-by-month,

controlling for baseline monthly electricity consumption, heating degree days, and the num-

ber of days within each billing period.52 Alongside the estimated impacts in Figure 4, we

plot the predicted electricity reductions in green. More refined than Appendix Calculation

1, these calculations use household-specific survey data to predict the impacts of treatment

month-by-month, including the same controls used in the estimated impacts regressions.53

By graphing the predicted and actual effects of CFL treatment together, a number of points

are evident. First, the figure shows a reduction in estimated impacts on electricity consump-

tion for treatment households, shortly following the CFL distribution in late March and April

2013. This indicates that households installed the CFLs shortly after receiving them via the

intervention, initiating electricity reductions at the household-level. Second, the estimated

impacts, which are graphed with 95% confidence intervals, are quite noisy in winter months.

This annual seasonal noisiness existed in the winter prior to the intervention albeit to a lesser

extent than post-intervention and likely results from heterogeneities in heating fuels used.54

Third, there are seasonal differences as to how closely the estimated electricity reductions

mimic the predicted impacts. The estimated impacts closely follow the predicted expected

impacts for the first six months post-intervention (April through September 2013). The two

lines then diverge in the five months following (October 2013 through February 2014), with

52Regressions do not include household fixed effects, as impacts are calculated separately month-by-month.
53We use data on the number of CFLs received, hours of lighting reported by households, etc. CFL

distribution began in spring 2013, making that the earliest for expected impacts.
54Some households heat with electricity, which would cause a large spike in their winter electricity con-

sumption. Other households heat with coal and therefore may just have a slight increase in electricity
consumption during winter, due to fewer hours of sunlight.
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the estimated impacts closer to zero during that period. Interestingly, this period overlaps

with the months of peak electricity demand. The predicted and estimated actual effects con-

verge in March 2014 and remain close through the end of the study period (September 2014).

We argue that the latter two above mentioned points – the divergence between the predicted

and estimated impacts and the particular noisiness of estimated impacts in post-intervention

winter months – are both related to the impact of transformer-level CFL treatment and the

resulting reduction in outages during these months of peak demand. The intuition is simple.

That individual household effects and aggregate transformer effects could occur simultane-

ously was not accounted for in our predicted impacts. However, in practice they would. If

CFLs reduce peak demand at the transformer level, this can result in fewer distribution out-

ages and more hours of electricity services available within a month. Although households

that received CFLs would use fewer kW per hour of lighting services (due to the greater

energy efficiency of CFL technologies), they can consume more kWh of electricity per month

due to electricity outages occurring with less frequency. With fewer outages, all households

in such transformers with improved reliability can consume more hours of electricity services

- regardless of their individual household treatment status. By the impacts depicted in Fig-

ure 4, we anticipate that treatment effects are heterogeneous across transformers depending

on whether household experience individual household electricity reductions alone or those

reductions in conjunction with more hours of electricity services.

6.2 Disentangling the impacts of CFLs on electricity consumption

Having implemented the event study, we estimate the impacts of CFL treatment on house-

hold electricity consumption with a basic specification and then build upon this analysis to

show how differentiating between households in the high and low saturation transformers is

important in understanding electricity consumption impacts.

We first estimate a simple difference-in-differences model:

qigt = τTig ∗ Postt + βPostt + δTig + αXigt + γt + λig + εig (2)

where qigt is the electricity consumption (kWh) in month t for household i within transformer

g, Tig is an indicator of treatment status for household i in transformer g that equals 1 if the

household itself was assigned to CFL treatment and the opportunity to receive up to 4 CFLs
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through the intervention, Postt is an indicator equaling 1 in the month of treatment and all

months that follow, and Xigt is a vector of household-level control variables.55 Month-by-year

fixed effects, γt, address the seasonal variations that occur throughout the year and affect

all households, such as hours of sunlight and climate. Household fixed effects, λi, control for

household-level characteristics that are fixed over time. Standard errors are clustered at the

household level.

The interaction, Tig ∗ Postt, is the term of interest, as the coefficient on this term, τ , is

the estimate of the average change in household monthly electricity consumption (in kWh)

that resulted from random household assignment to treatment. Table 3 Column 1 reports

intent-to-treat estimates of τ .56 The impacts are identified from variation within households

over time, controlling for month-by-year shocks.

The basic estimate in Table 3 Column 1 indicates that the CFL treatment reduces household

electricity consumption by 16.7 kWh per month. The magnitude of this coefficient is less

than half the expected reduction, as calculated in the first step of our benchmarking calcula-

tions in Appendix Calculation 1. This estimate, however, is flawed in several respects. First,

it is does not differentiate between treated households in high versus low saturation trans-

formers. Second, the omitted group in this regression is comprised of all control households,

regardless of whether they are located in control transformers, low saturation transformers,

or high saturation transformers.

To address the first concern mentioned above, we estimate the impacts of CFL treatment

on household electricity consumption, differentiating by treated households in higher versus

lower treatment saturation transformers. We estimate:

55These include controls for number of days in monthly billing period and whether the household uses
electricity for heating. We also control for heating degree days; however, we only have variation in temper-
ature over time, as the 7 villages in the study sample are all covered by one weather station and data are
reported at that level. Nevertheless, we do not expect for there to be much spatial variation in temperatures
across villages included in the study given their size and proximity.

56Regarding compliance and attrition, potential concerns might include: (i) whether treated households
took the CFLs assigned to them, and (ii) whether study households had moved prior to the follow-up survey.
We address these issues as follows. First, in our intent-to-treat estimates, treated households that did not
comply with the treatment are considered treated. Second, we obtain estimates two ways: including all
households (movers and non-movers) and excluding houses with new tenants (just non-movers). Results are
consistent across these analyses.
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qigt = θTHighig ∗ Postt + µTLowig ∗ Postt + ωTHighig + ψTLowig+

βPostt + αXigt + γt + λig + εig
(3)

where THighig is an indicator equal to 1 for treated households located in high saturation

transformers and TLowig is an indicator equal to 1 for treated households located in low

saturation transformers. The omitted group in this regression is still comprised of all control

households, regardless of transformer treatment saturation.

The results of this estimation are presented in Table 3 Column 2. In low saturation trans-

formers, the CFL household treatment led to a 27.7 kWh per month reduction in electricity

consumption, on average. This reduction is statistically significant and close in magnitude to

our benchmarking calculation of the expected reduction in the summer scenario. In contrast,

treated households in high saturation transformers did not significantly reduce electricity con-

sumption. As indicated by the Wald p-value, the coefficients for the two groups of treated

households are statistically significantly different from one another.57

The difference in estimated impacts for low and high saturation transformers is consistent

with the outage results in Table 2. Treated households in low saturation transformers expe-

rience no significant change in outages (no increase in hours of electricity services available),

but they benefit as a result of replacing incandescent bulbs with CFLs. CFLs use fewer

kW per hour of lighting services and, therefore, a reduction is observed in their monthly

electricity consumption. In contrast, treated households in the high saturation transformers

experience significantly fewer outages as a result of the transformer treatment. There is no

significant or large reduction in kWh per month of electricity consumed amongst this group,

but not because the CFLs did not work. Rather, reductions in kW per hour of lighting

services consumed are offset by an increase in hours of electricity services consumed due to

greater availability of electricity services.

The estimation in Column 2 is preferable to that in Column 1, but nonetheless problematic.

The omitted group is still comprised of all control households, regardless of transformer

57This difference is particularly meaningful given the demand results in Table 1 showed no significant
difference between the two groups in the average number of energy efficient lightbulbs received (3.2 CFLs
on average) via treatment.
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treatment status. When either reliability externalities or adoption spillovers exist, the con-

trol households within treated transformers would be contaminated. If control households

in both high and low saturation transformers adopt CFLs on their own, then the impacts

estimated for treated households in Columns 1 and 2 are downward bias (i.e. less negative

than they should be). This bias is less certain in high saturation transformers, where con-

trol households’ electricity savings from a CFL adoption spillover may be mitigated by an

increase in electricity consumption due to improved electricity reliability.

We re-estimate the impacts of CFL treatment on household electricity consumption, address-

ing the potential within-transformer contamination in a fashion similar to Gine and Mansuri

(2018) and Banerjee et al. (2014). We employ the following specification:

qigt = θTHighig ∗ Postt + µTLowig ∗ Postt + νCHighig ∗ Postt + σCLowig ∗ Postt+

ωTHighig + ψTLowig + φCHighig + κCLowig + βPostt + αXig + γt + λig + εigt
(4)

in which THighig and TLowig remain as in the previous equation. We add CHighig and

CLowig, which are indicators that equal 1 if the control households are located in high sat-

uration and low saturation treatment transformers, respectively. The coefficients of interest

are those on the interactions between those four variables and the Postt variable. Impor-

tantly, the omitted group in this regression is now comprised of only control households

located within control transformers, which we consider a “pure control” group.

We estimate this regression in two ways. First, we estimate it with the month-by-year fixed

effects, γt, and household fixed effects, λi, employed in the earlier estimations. Second, we

replace the household fixed effects with household-by-season fixed effects. Results are shown

in Table 3, Columns 3 and 4, respectively. The latter specification, which accounts for any

potential concerns of pre-intervention seasonal differences in electricity consumption across

treatment groups, is our preferred.

Results in Column 4 indicate that the CFL treatment amongst treated households in low sat-

uration transformers reduced household electricity consumption by -37 kWh per month. The

reduction amongst treated households in high saturation transformers is statistically insignif-

icant and of a smaller magnitude at -15 kWh. Given they did not significantly differ in their

take-up of CFLs, this heterogeneity across treated households in high versus low saturation
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transformers reflects a difference in electricity services reliability across these transformers.

Compared to Column 2, the coefficients’ magnitudes in Column 4 are larger, suggesting

that control households in treated transformers were indeed contaminated.58 Overall, the

progression of electricity consumption results in Table 3 Columns 1 to 4 is consistent with

reliability externalities and adoption spillovers within treated transformers. Section 5 pro-

vided direct evidence on reliability impacts. Section 7 will provide additional evidence of

adoption spillovers.

Although our experiment design does not allow us to perform a direct test to rule out the

possibility of a rebound effect, a number of analyses are inconsistent with a direct or indirect

rebound in electricity consumption. For instance, the event-study graph of the impacts on

electricity consumption by season (Figure 4) showed that following a winter spike, savings

in electricity consumption returned to the expected amount in the spring. If a rebound

occurred, a persistent change in behavior would be expected, and a reversal in the spring

would have been unlikely. Furthermore, using our detailed baseline and follow-up survey

data, we tested for impacts of treatment on appliance ownership and average use (results

not shown).59 We found no effects of treatment on lightbulb use (which would be a measure of

a direct rebound) and only one significant effect of treatment on use of household appliances

(which would be a measure of an indirect rebound) out of 25 appliances for which data were

collected. Treatment households were significantly less likely to report using electric heaters

at follow-up. If anything, this finding is evidence counter to a rebound effect.

7 Understanding CFL adoption

To formally test for spillovers in CFL take-up, we estimate the same panel regression with

household fixed effects employed in Equation 4, but use the total number of CFLs in a

house as our outcome variable and control for the number of CFLs distributed through our

intervention on the right hand side. If electricity consumption reductions amongst control

58Indeed, the coefficient on CLowig is consistent with spillovers in adoption, as control households in low
saturation transformers show a reduction in electricity consumption of -36 kWh per month. Although the
interpretation of the coefficient on CHighig is less clear, it is not inconsistent with the outage results.

59In both survey rounds we ask a number questions regarding the household use of appliances, including
“On average, how many days per month do you use [the appliance]?”, and “On average, how many hours
per day does your HH use [the appliance]?” Important to note, these questions are asking about average use
per month and per day. In contrast, our question on outages asks about the past month. For this reason,
that we find no impacts on the use of lightbulbs is not inconsistent with our aggregate reliability results.
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households in treated transformers are indeed indicative of adoption spillovers, then this

should bear out in the number of CFLs within these households at follow-up.

Results are presented in Table 4 Column 1. Treated households appear not to have purchased

any additional CFLs between the intervention and follow-up survey. This is not surprising.

We provided them 3.2 CFLs at baseline, which was enough for the average household to re-

place most of its incadescent bulbs with the CFLs.60 Instead, we do see evidence of spillovers

in adoption amongst the control households in treated transformers. Regardless of trans-

former treatment saturation, these households have significantly more CFLs than the “pure”

control households in control transformers. At follow up, control households in high satura-

tion transformers have more CFLs than control households in low saturation transformers.

However, the average CFL take-up in high saturation transformers is not statistically signif-

icantly different from adoption in low saturation transformers.

These results are noteworthy for several reasons. First, the estimated adoption spillovers

are in addition to the overall increase in CFL ownership that occurred during this period,

displayed by the coefficient on Postt. Second, these adoption spillovers occur within the

treated transformers, which means they contribute to the aggregate effect on outages shown

in Table 2.61 Third, the spillover estimates confirm that differences in outages, not in adop-

tion of CFLs, are likely to underly the dissimilar electricity consumption impacts for control

households in high and low saturation transformers.62

To better understand the extent to which having close-by neighbors who received CFLs

through our intervention matters in generating these adoption spillovers, we run the above-

mentioned regression again but differentiate control households in treated transformers by

their proximity to a treated household.63 We define a household as being “close” to a treated

one if it is within 100 meters from any treated household.64

60The CFL is a durable good with a multi-year expected lifespan. Therefore, we would not anticipate that
the treated households would require additional CFLs after just one year has passed.

61In other words, they would also contribute toward the electricity load reduction within the transformer.
62The control households in high saturation transformers have no reduction in monthly electricity con-

sumption in spite of having (insignificantly) more CFLs than those in low saturation transformers.
63This definition of closeness between households is a distance measure of geographical proximity. As

discussed in Breza (2016), a number of studies have used geographical proximity to measure spillovers,
including Dupas (2014), Godlonton and Thornton (2012), and Cohen, Dupas and Schaner (2015).

64GPS location data, collected during the baseline household survey, are used to perform distance calcu-
lations in ArcGIS.
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Results, shown in Column 2, indicate that proximity does matter for adoption spillovers.

Control households that are in treated transformers but far from a treated house do not

have significantly more CFLs than the pure control households at follow-up. In contrast, the

number of CFLs amongst groups of control households that are both in treated transformers

and close to treated households is significantly larger than among pure controls. The adop-

tion estimates for control households in treated transformers increase once we account for

close proximity to a treated household, suggesting that the results in Column 1 could be an

underestimate. No statistically significant difference by transformer saturation level is found

among control households who have close-by treated neighbors. Nevertheless, the adoption

estimates are larger in magnitude for control households in high saturation transformers

relative to those in low saturation transformers.

Although we cannot fully disentangle the path through which adoption spillovers occur, we

provide evidence that proximity matters not only in generating adoption spillovers but also

in changing beliefs and preferences regarding the CFLs. Results, shown in Appendix Table 3,

are similarly estimated using household panel survey data. The largest changes in beliefs and

preferences occur amongst the treated households (relative to the pure control households).

We do also see some evidence of spillovers in beliefs and preferences for CFLs amongst the

control households in treated transformers that are close to treated households.

8 External validity

We implemented a randomized saturation design to study the impact of energy efficient

lightbulbs on local electricity reliability and household electricity consumption in a lower-

middle-income developing country. Our thinking about external validity is then concerned

with the extent to which our results are location-specific or technology-specific.

One important feature of our study’s setting, the Kyrgyz Republic, is that essentially all

households are electrified, formally connected to the network and metered individually. This

feature helps with the internal validity of our study without harming the external validity.

If the setting were not a fully electrified country or informal connections to the network were

common, we would be measuring the responses of the first households to connect, which are

very likely the richest households. Also, if households were not metered for their individual
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electricity consumption, their incentives to adopt would be lowered. Our study setting also

has an extensive electricity generation and distribution infrastructure. However, similar to

other developing countries, it has a problem of insufficient infrastructure capacity relative to

demand. Aggregate electricity demand relative to infrastructure capacity, not infrastructure

alone, determines the probability of system overload, which results in unplanned outages.

As such, this work is relevant to many developing countries in which demand for electricity

is either currently pushing the infrastructure capacity or rapidly increasing such that infras-

tructure capacity may be binding in the near future.

Furthermore, our study setting is unique in that it allows us to generate technological exter-

nalities in electricity reliability at relatively low treatment saturation. However, we do not

make the point that technological externalities can be induced at some particular saturation

of energy efficiency. Instead, we show that these externalities are possible to generate and

that they are crucial in understanding the welfare implications of energy efficiency programs.

Although similarly low saturation levels in other settings may not induce such reliability ef-

fects, the existence of technological externalities should not be ruled out. Instead, we should

ask how high the saturation ought to be to generate them. Likewise, we should ask what

type of externality a program is expected to induce. The externality may not be limited to

a reduction in outages, but may take other forms such as reductions in prices. The type of

externality and the saturation level that induces it will depend on many factors, including

the type of capacity constraint in the electricity infrastructure, the number of consumers the

infrastructure serves, and the feasible engineering impacts of the technology distributed.

The relevance of our findings is not limited to developing country settings, but they also

speak to developed countries. Although developed countries are less likely to have electricity

reliability problems, they do experience congestion within the electricity distribution network

due to peak loads, which impacts utility prices. Deployment of CFL technologies in such

settings may not have similar impacts, but we believe our findings are not just specific to

energy efficient lighting. A program wishing to induce an aggregate impact in a wealthier

setting, such as the United States and other developed countries, where households own a

greater number of electricity-using durables, may need to focus on a technology that accounts

for a larger proportion of the electricity bill.

26



9 Conclusions

Through an experiment with a randomized saturation design, we provide several substantial

contributions to the literatures on energy efficiency, electrification, and electricity reliability.

We show that the energy efficient technology, when taken up at a high enough saturation

level, can have a local effect on electricity reliability, in the form of fewer days without elec-

tricity due to outages at the transformer level. By improving electricity service reliability,

the energy efficient technology becomes more valuable; households can use the CFL for more

hours when the electricity service is more reliable (i.e. providing electricity for more hours

per month at a lower cost than traditional lightbulbs). This is a classic example of a techno-

logical externality, through which the returns to a particular technology are increasing with

the number of other adopters. The results in Table 3 highlight ways in which estimates of

the effects of energy efficiency could be biased, if we do not account for spillovers in take-up,

potential externalities, and heterogeneity in impacts across seasons.

Our study also highlights that an increase in electricity consumption following the introduc-

tion of CFLs is a welfare improvement, not a sign of ineffective technology. Other technologies

inducing positive externalities may create incentives for households to free-ride on the adop-

tion by others. We show that in this case, in which the aggregate effect increases the returns

to the technology, the externality may ameliorate (or even offset) the incentive to free-ride.

Thinking about this interaction between technological externalities and incentivizing adop-

tion is important for both policy design and the development of new technologies.

As a result of this analysis, we can perform several variations of cost-benefit analyses both

with and without accounting for the aggregate benefits of improved electricity service reli-

ability. Benefit calculations, shown in Table 5, that include both reductions in electricity

consumption and increased electricity services are more than double the estimated benefits

from electricity savings alone in the first year post-adoption (approximately $14 in esti-

mated benefits instead of $7). Full descriptions of these calculations, included in Appendix

Calculation 2, demonstrate that accounting for externalities in the welfare calculations is

crucial. The benefits in year 1 of the program are substantially larger than the upfront cost

of purchasing and distributing the CFLs (approximately $9 per household). These simple

calculations provide a lower bound estimate of benefits from such energy efficiency distribu-

tion programs, given they do not account for other benefits, such as pollution reductions.
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An energy efficiency distribution program, such as ours, looks much more favorable after

making this correction.

In addition, Appendix Figure 2 and Figure 4 uncovered substantial variation by season in

overall household electricity consumption and treatment impacts. This has important impli-

cations. First, when measuring impacts of energy efficient technologies, comparing outcomes

in a given month (e.g. June) before and after the treatment is not sufficient to address

seasonality. Because reliability impacts may occur, the savings attained by energy efficient

lighting would appear to be small in peak-demand months. On the contrary, they would

appear to be large in months when demand is lowest. Impacts may be better measured as

the average over a year rather than at a specific month. Relatedly, the seasonality pattern

suggests that the time of the year when energy efficient technologies are distributed matters.

If technologies were introduced in low-demand months, end-users could observe reductions in

consumption similar to the feasible engineering estimated impacts. Instead, if the technology

were distributed in peak-demand months, adopters may dismiss the technology as deficient

rather than one that induces a reliability externality. In our study, the fact that CFLs

were distributed immediately before low-demand months may have allowed households to

learn about the true effectiveness of CFLs during the summer, enabling them to understand

that the smaller reductions in consumption during peak-demand months were a welfare gain.

Finally, the paper provides a novel application of a randomized saturation design at a policy-

relevant and technologically meaningful scale. In doing so, we demonstrate the usefulness of

such a design to inform our understanding of aggregate impacts and technological external-

ities from various interventions. This methodology can be applied to study other topics for

which decomposing private returns and technological externalities is important in measuring

the impacts of technology adoption and choosing between various policy options or program

subsidy levels.
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Figure 1: Randomized saturation process
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Figure 2: Stylized example of randomized saturation design
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Table 1: Household demand for CFLs by transformer intensity

(1) (2) (3) (4)

Averages of treated households: 

Number of CFLs received  3.17 3.34 3.00 0.125 

Bid made for 1 CFL (KGS/CFL)  51.70 55.22 49.42 0.385

Price paid for 1 CFL (KGS/CFL) 12.56  12.69 12.44 0.747

Low saturation 
transformers 

High saturation 
transformers

All transformers Joint F tests (p-value)    
Low saturation =                 
High saturation 

Notes: Measurements from demand intervention in March/April 2013. Calculations made based on the experimental 
measures of demand. Only treated households participated in the demand intervention, therefore calculations include 
only data for the treated households, not control households. "Treated households" is an intent to treat and includes 
all households assigned to the treatment, regardless of whether they actually received CFLs.  "Low saturation 
transformers" are those in which between 10 and 14 percent of households in the transformer were assigned to 
treatment. "High saturation transformers" are those in which 15 to 18 percent of households in the transformer were 
assigned to treatment.  There are 85 transformers in total across the high and low saturation transformers.  The 
exchange rate in March 2013 was 1 USD = 48 KGS.
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Figure 3: Number of days without electricity, by transformer-level treatment status

.

Notes: Analysis performed using data from household follow-up survey data, collected in response to the 
survey question, "In the past month, how many days had your household been without electricity, due to 
problems with the electrical system in the village?" Control transformers are transformers in which no 
households received the intervention CFLs.  Treated transformers are transformers in which some proportion 
of households received the intervention CFLs.    
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Table 2: Aggregate effect of CFLs: improved electricity reliability

(1) (2)

TG low saturation -1.321 -1.164
(0.851) (0.868)
[0.433] [0.434]

TG high saturation -1.866** -2.162***
(0.812) (0.822)

[0.000] [0.000]

Household treatment status controls No Yes
Constant 3.810*** 3.811***

(0.836) (0.838)

p-value: TG low = TG high 0.228 0.047

Observations 838 838
R-squared 0.051 0.053

Dependent Variable: Number of Days Without Electricity (in past month) 

Notes: Analysis performed using data from both baseline and follow-up household surveys. Outcome 
variable is created in response to the survey question, "In the past month, how many days had your 
household been without electricity, due to problems with the electrical system in the village?" All 
regressions control for the response to this question in the baseline survey, as well as the number of 
households within the transformer.   "TG low" is a indicator variable that equals 1 if 10 to 14 percent 
of households in a transformer were assigned to treatment. "TG high" is a indicator variable that 
equals 1 if 15 to 18 percent of households in a transformer were assigned to treatment. The omitted 
group is comprised of  households in control TGs. The "Household treatment status controls"  are 
separate binary indicators that equal one for treated households.  Standard errors are clustered at the 
transformer level and shown in parantheses, with * significant at 10% level; **  significant at 5% 
level; and ***  significant at 1% level.  P-values accounting for multiple-hypothesis testing, as 
discussed in List, Shaikh, and Xu (2015), are shown in brackets. 
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Figure 4: Predicted and actual effects on electricity consumption (kWh per month)

Notes: Analysis performed using  household-level panel of monthly electricity consumption data, as 
provided from the electricity utility's billing records. The graph of the estimated impact was created 
by plotting the coefficients from regressing household electricity consumption (kWh) on household 
treatment status on a month-by-month basis. The resulting regressions for each month within the 
study period mean that we cannot include household fixed effects (as is included through much of the 
paper's analysis) in creating these graphs; however, all regressions include controls for the 
household's baseline monthly electricity consumption (for the year prior to the intervention) and the 
number of days within each monthly billing period. The expected impact is calculated based on the 
number of CFLs distributed to the households, the number of hours of lighting reported by 
households in the baseline survey, as well as the shifting hours of sublight throughout the calendar 
year. Distribution of CFLs began in March 2013, so by design the expected impacts are zero up until 
that time.
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Table 3: Household electricity consumption effects: results consistent with outage
reduction and adoption spillovers

(1) (2) (3) (4)

Treated household * Post -16.679*
(8.780)

Treated household in TG low * Post -27.688*** -44.132*** -36.961**
(10.482 ) (12.696) (15.689)

Treated household in TG high * Post -7.175 -23.603* -14.996
(11.026) (13.138) (16.418)

Control household in TG low * Post -44.364*** -35.729**
(13.347) (16.147)

Control household in TG high * Post 8.051 21.080
(17.908) (23.040)

Omitted group All control 
houses

All control 
houses

Houses in control 
transformers

Houses in control 
transformers

Month-by-year FEs Yes Yes Yes Yes 

Household FEs Yes Yes Yes No

Household-by-season FEs No No No Yes 

Wald p-value: T in TG high = T in TG low 0.098 0.098 0.139

Wald p-value: C in TG high = C in TG low 0.003 0.011

Households 899 899 899 899
Observations 31,143 31,143 31,143 31,143 

Dependent Variable:  Monthly Household Electricity Consumption  (kWh)

Notes: Analysis performed using  household-level panel of monthly electricity consumption data for the period between 
April 2011 to September 2014, as provided from the electricity utility's billing records. The "post" period are the months 
after the intervention implementation (from April 2013 onwards). "Treated" households were offered to receive up to 4 
CFLs through the intervention. "Control" households were not offered CFLs through the intervention. "TG low" are 
transformers for which 10 to 14 percent of households in the transformer were assigned to treatment. "TG high" are 
transformers for which 15 to 18 percent of households in the transformer were assigned to treatment. "Control 
transformers" only contain control households. All regressions include controls for monthly heating degree days, number 
of days in each monthly billing period, and the use of an electric heater. Each month drops the top 1% of observations with 
respect to electricity use. All regressions drop households that moved during period between intervention and follow-up 
survey (101 households).  Standard errors are clustered at the household level and resported in parantheses, with * 
significant at 10% level; **  significant at 5% level; and ***  significant at 1% level. 

40



Table 4: Spillovers: CFL stock at follow-up

(1) (2)

T household in TG low * Post 0.319 0.319
(0.260) (0.260)

T household in TG high * Post 0.139 0.139
(0.299) (0.299)

C household in TG low * Post 0.689***
(0.257)

C household in TG high * Post 0.843***
(0.303)

C household in TG low and close to T * Post 0.706**
(0.288)

C household in TG high and close to T * Post 0.910***
(0.308)

C household in treated TG and far from T * Post 0.447
(0.392)

Post 0.253** 0.253**
(0.108) (0.108)

Constant -0.127** -0.127**
(0.054) (0.054)

Omitted group Control hhs in 
control TGs

Control hhs in 
control TGs

Wald p-value: T in TG high = T in TG low 0.618 0.618

Wald p-value: C in TG high = C in TG low 0.675 0.603

Households 749 749
Observations 1498 1498

Dependent Variable: Total number of CFL bulbs in home 

Notes:  Data on the total number of CFLs in homes were collected via the baseline (March 
2013) and follow-up (March 2014) surveys, forming a panel dataset. All specifications include 
household fixed effects and control for the number of CFLs given to the treated households 
through the intervention. Regressions include only households for which there are both baseline 
and follow-up data; households that moved during the period between the intervention and the 
follow-up survey are dropped. The "post" period data were collected via the follow-up survey in 
March 2014. "TG low" are transformers for which 10 to 14 percent of households in the 
transformer were assigned to treatment. "TG high" are transformers for which 15 to 18 percent 
of households in the transformer were assigned to treatment. "Control TGs" only contain 
control households. Being "close to T" is an indicator that equals 1 when a control household is 
located < 100 meters from a treated household.  Control households that are "far from T" are 
located > 100 meters from a treated household. Standard errors are clustered at the transformer 
level and in parentheses, with * significant at 10% level; **  significant at 5% level; and ***  
significant at 1% level.  
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Appendix: For on-line publication
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Appendix Figure 1: Bid per CFL Conditional on Being At or Above Randomly Drawn
Price

Notes: Measurements from demand intervention in March/April 2013. Only treated households participated in 
the demand intervention, therefore calculations include only data for the treated households, not control 
households.  "Low saturation transformers" are those in which between 10 and 14 percent of households in the 
transformer were assigned to treatment. "High saturation transformers" are those in which 15 to 18 percent of 
households in the transformer were assigned to treatment.  There are 85 transformers in total across the high 
and low saturation transformers.  The exchange rate in March 2013 was 1 USD = 48 KGS.
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Appendix Table 2: Household-level randomization check

Joint F tests           
(p-value)

All Control Treatment
Control = 
Treatment 

(1) (2) (3) (4)

General characteristics 
Household head completed secondary school 0.840 0.867 0.818 0.090
Household income past month (KGS) 10900 11463 10427 0.138
Household income past month per capita (KGS/person) 3668 3740 3608 0.603
Owner-occupied house 0.912 0.919 0.906 0.506
Number of people living in the home 3.6 3.7 3.5 0.218
Time at address (months) 203 201 204.137 0.789

Housing characteristics
Single-family dwelling 0.793 0.829 0.762 0.053
Number of rooms 4.302 4.245 4.35 0.409
Home made from  brick 0.535 0.569 0.507 0.100
Floors that are wood 0.877 0.864 0.887 0.388
Age of dwelling (years) 41.29 41.27 41.30 0.987
Electricity meter for single house 0.991 0.993 0.989 0.546

Electricity consumption practices
Outages in the past month 1.66 1.58 1.75 0.338
Winter electricity consumption (kWh/month) 554.80 541.11 566.33 0.379
Total number of appliances 8.4 8.6 8.2 0.210
Lighting hours per day 17.5 17.9 17.2 0.643
Think about saving electricity 0.946 0.934 0.955 0.500
Do something to save electricity 0.86 0.829 0.885 0.185
Rooms heated in winter 3.14 3.12 3.15 0.764
Total light bulbs in house 6.2 6.5 6.0 0.128
Total incandescent bulb in house 6.1 6.3 5.8 0.177
Total CFls bulbs in the house 0.2 0.2 0.1 0.353
Believe CFL use less energy 0.305 0.319 0.292 0.436

Number of households 1000 457 543

Note: All calculations performed using baseline survey data, except for electricity consumption (kWh), which was 
calculated using the electricity utility's billing records. Winter baseline electricity consumption is calculated for the 
months between November 2012 and February 2013.  In March 2013, the exchange was 1USD = 48 KGS. 
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Appendix Figure 2: Pre-intervention seasonality of electricity consumption by household
treatment status
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Appendix Calculation 1: Estimates of the intervention’s technolog-

ically feasible impacts

We have implemented this two-staged randomized treatment to vary distribution of the

CFLs at the household-level and the intensity of CFL saturation at the transformer-level.

To benchmark our findings, we calculate (1) the potential household-level reductions in elec-

tricity consumption resulting from replacing incandescent lighbulbs with CFLs, and (2) the

expected peak load reduction from implementing this lightbulb replacement en mass within

the electricity distribution system. These calculations are shown on the following pages in

Steps 1 and 2, respectively.

STEP 1: Benchmarking household reductions in electricity consumption

Benchmarking the technologically feasible reduction in electricity consumption at the household-

level is undertaken in two sub-steps. First, we calculate the kW reduction that occurs from

replacing the original bulbs with more energy efficient ones. This is a mechanical difference

and is a function of the number of lightbulbs changed, the wattage of the original bulbs that

are being replaced, and the wattage of the bulbs to which they are changed. We calculate a

potential 0.253 kW reduction, as a result of replacing 3.2 incandescent 100 W bulbs with 21

W CFLs.65

Second, we calculate the expected kWh reduction in monthly electricity consumption for

three different scenarios (winter, spring/fall, and summer months). These different scenarios

account for variations in day length (sunlight hours) and heterogeneities in appliance use

across seasons.66 Based on these calculations, we estimated electricity consumption to de-

crease, as a result of the intervention, by between 26.5 kWh per month in the summer and

42 kWh per month in the winter. These estimates provide a sense as to the magnitude by

which monthly residential electricity consumption could change via this intervention.

65From the survey piloting exercises in Fall 2012 and the baseline survey data collected in Spring 2013,
we know that 100 watt incandescent bulbs were most common in households prior to the intervention. We
selected 21 Watt CFLs as the replacement bulbs, due their rating as 100 Watt equivalent bulbs. Therefore,
we know that the typical household in our treated group is shifting from 100 Watt incandescent to 21 Watt
CFLs. On average, treated households received 3.2 CFLs through the intervention.

66Hours of lighting calculations are performed with data on hours of lightbulb use, as collected via the
baseline survey. Estimates of hours of lighting use throughout the year are extrapolated using data on the
timing of sunrise and sunset in the region. These predictions assume behavior with respect to lighting and
other electricity uses remain constant post-intervention, which is consistent with the evidence on a lack of
rebound effect and other related behaviors.
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Benchmarking calculations

STEP 1. Benchmarking household-level reductions

1A. Reduction from changing bulbs: incandescent to CFLs 

(a) Average number of bulbs replaced 3.2

(b) Original bulb: Incandescent bulb wattage (W) 100

(c) Replacement bulb: CFL bulb wattage (W) 21

(d) Watt reduction:  [ = a*(b - c)] 252.8

(e) kW reduction:    [ = (a*(b - c))/1000] 0.2528

1B. Scenarios of expected reductions in electricity bill, by season 

Winter Spring/Fall Summer Baseline year avg 

(p) kW reduction 0.2528 0.2528 0.2528 0.2528
(q) Average hours of bulb use per day 5.5 4.5 3.5 4.5
(r) Days in month 30 30 30 30

(s) Expected CFL savings (kWh)   [ = p*q*r ] 41.71 34.13 26.54 34.13

(t) Average monthly bill (kWh/month) 566.3 340 245 379

(u) Expected reduction in bill (%)  [ = (s/t)*100] 7% 10% 11% 9%

STEP 2. Benchmarking transformer-level reductions

2.A Expected peak load reductions 
Winter scenario Spring/Fall Summer scenario

(t) Average monthly bill (kWh/month) 566.3 340 245
(v) Average hourly demand (kW) [ = t /30 days/24 hours] 0.787 0.472 0.340
(w) Assuming peak load is 70% > average load, 

  calculate housheold peak (kW)  [ = 1.7 * v  ] 1.337 0.803 0.578

(x) Reduction in household peak demand (%) [ = e/w] 19% 31% 44%

Notes: The assumption that peak load is approximately 70% more than average load, which is in line with the U.S. 
Energy Information Administration's calculations for peak-to-average electricity demand ratios.

Notes: Average number of light bulbs replaced is based on the actual numbers 
of CFLs distributed through the intervention.  Incandescent wattage is the 
typical wattage found in households at the time of piloting the project and the 
baseline survey.  CFL wattage is the actual wattage pof the lightbulbs 
distributed through the intervention. 

Notes:  These calculations are for three seasonal scenarios. For these calculations, the winter months include November through 
February; spring/fall months include March, April, September, and October; and summer months include May through August. The 
average hours of use per day is calculated using the baseline survey data (Spring 2013) and data on sunrise and sunset times are used to 
extrapolate for the rest of the year. Average monthly electricity bill is calculated using baseline electricity use amongst the treated 
households in our sample during the year prior to the intervention. 
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STEP 2: Benchmarking peak load reductions within transformers

As common in many developing countries, unplanned outages in the Kyrgyz Republic are

typically the result of overloads within the distribution system. Overloads occur during

times of peak electricity consumption. In a setting in which electricity is used for heating,

overloads are most common in the winter, particularly winter evenings, when household en-

ergy demand is greatest. Times of peak demand are the early mornings and the evenings.

Lighting is disproportionately “on peak”, in that we most often use lighting in the evenings

and early mornings.

To better understand the potential aggregate impact that switching from incandescent bulbs

to CFLs could have on electricity distribution, we want to estimate the impact on peak load.

To do do, we carry-out the second benchmarking calculation, a back-of-the-envelope cal-

culation based on data from our sample and some informed assumptions.67 Given there

are seasonal heterogeneities in peak load, we perform these calculations for three seasonal

scenarios. Using data from our treated households on monthly electricity consumption, we

estimate a 1.34 kW reduction in peak load during the winter, which reflects a 19% decrease

in household peak demand. If 20% of the households within a transformer are included in

the program and each household sees a 19% reduction in its peak demand, then the peak

demand on the transformer is reduced by 4%.

67We use the U.S. Energy Information Administration’s calculations for peak-to-average electricity ratios
to inform our assumption that peak load is approximately 70% more than average load.
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Appendix Calculation 2: Cost-benefit analysis of the CFL program

To understand the welfare implications of such a CFL distribution program, we perform

some simple cost-benefit calculations. By using the estimated impacts of CFLs on electric-

ity savings and the aggregated impacts on reliability of electricity services, we are able to

demonstrate the implications of performing these welfare calculations both with and without

accounting for reliability improvements.

To simplify these calculations, we perform the cost-benefit analysis for the first year of the

CFL program. The one-year analysis is sufficient to demonstrate the importance of the re-

liability impacts for welfare calculations. In addition, this simplification is useful for several

reasons, in that we: can use the estimated coming from our experiment, which measures

impacts over the course of 18 months following the CFL distribution; avoid having to make

assumptions about the life span of the CFLs; do not have to worry about multi-year equilib-

rium adjustments in consumption; and, finally, we need not make any assumption regarding

the discount rates.

Cost calculations

We perform program cost calculations from the perspective of a government entity imple-

menting an energy efficiency program through a door-to-door campaign. These calculations

are made based on a CFL distribution program with the design of our experiment: in which

CFLs are distributed through individual house visits, at which time information on the ben-

efits of CFL adoption are provided to households. Incandescent bulbs currently in-use at

the households are not taken from the households. To encourage households to install the

CFLs quickly, the entity distributing the CFLs can remove the packaging at the time of dis-

tribution. Although such door-to-door campaigns may be effective at inducing technology

take-up, this is one of the more expensive distribution options available. Cheaper distri-

bution programs include ones that distribute coupons at stores or through mailings, which

permit households to receive the technology for free or a subsidized price.

In the calculations, we divide costs into two components: the cost of CFL purchase and

the cost of distributing the technology through the door-to-door campaign. Calculations

are shown in Appendix Table 4. We base these calculations on details from our own ex-

periment, such as the price per CFL, the number of households served by the program,

the average number of CFLs distributed per household, etc. These calculations do differ
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from our experiment in that here we assume the government bears 100% of the program

costs. This need not be the case given that we find households are willing to pay a positive

price for the CFLs. We can shift the assumptions as to the number of households such a

door-to-door campaign can reach per day, but such shifts do not alter the costs substantially.

Benefit calculations

We perform three versions of benefit calculations for such a CFL distribution program, as

shown in Table 5. Important to note, these calculations do not include the value of any

reductions in pollution resulting from the CFL adoption.

Version A is our most simplified calculation of average benefits for households in all trans-

formers. This is based on the estimate of electricity consumption impacts from Table 3,

Column 2. This estimate does not account for any aggregate impacts in reliability of elec-

tricity services and is therefore an underestimate of the benefits. Even so, the benefits per

household in the first year are approximately $1.16 less than the costs per household.

Version B estimates the benefits from the CFLs among households that do not have any

changes in reliability of electricity services. These calculations use estimated electricity sav-

ings amongst treated households in transformers not experiencing any reliability improve-

ments (see Table 3, Column 4). Here the benefits per treated household in year 1 are greater

than the costs per household.

Finally, Version C of the calculation includes the benefits from the CFLs amongst households

that experience improvements in the reliability of electricity services. These calculations use

the reduction in electricity consumption amongst treated households experiencing reliability

improvements (see Table 3, Column 4). Part 2 of these calculations are still likely an under-

estimate of household benefits given that electricity prices were very low. In this calculation,

the benefits per treated household in year 1 are nearing double the costs per household.
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Appendix Table 4: Costs of CFL Distribution Program

Part 1: CFL purchase cost 

Average # CFLs distributed 3.2 per household
Cost per  CFL 120 KGS
Cost per household 384 KGS 
Number of  households 543  
Total CFL purchase cost 208512 KGS 

Part 2: CFL Distribution cost 

Number of  households 543
Households visited per day 12
Time to distribute CFLs 45 Days
Cost per workday 467 KGS 
Total distribution cost 21132 KGS 

Total Program Cost (Purchase+ Distribution):

Costs  229643.75 KGS 
Exchange rate 48.00 KGS = 1 USD 
Costs 4784.24 USD 

Cost of Program Per Household  8.81$         

COSTS FOR CFL DISTRIBUTION PROGRAM
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